Metamath Proof Explorer


Theorem alimp-no-surprise

Description: There is no "surprise" in a for-all with implication if there exists a value where the antecedent is true. This is one way to prevent for-all with implication from allowing anything. For a contrast, see alimp-surprise . The allsome quantifier also counters this problem, see df-alsi . (Contributed by David A. Wheeler, 27-Oct-2018)

Ref Expression
Assertion alimp-no-surprise ¬ x φ ψ x φ ¬ ψ x φ

Proof

Step Hyp Ref Expression
1 pm4.82 φ ψ φ ¬ ψ ¬ φ
2 1 albii x φ ψ φ ¬ ψ x ¬ φ
3 alnex x ¬ φ ¬ x φ
4 2 3 sylbb x φ ψ φ ¬ ψ ¬ x φ
5 imnan x φ ψ φ ¬ ψ ¬ x φ ¬ x φ ψ φ ¬ ψ x φ
6 4 5 mpbi ¬ x φ ψ φ ¬ ψ x φ
7 19.26 x φ ψ φ ¬ ψ x φ ψ x φ ¬ ψ
8 7 anbi2ci x φ ψ φ ¬ ψ x φ x φ x φ ψ x φ ¬ ψ
9 3anass x φ x φ ψ x φ ¬ ψ x φ x φ ψ x φ ¬ ψ
10 3anrot x φ x φ ψ x φ ¬ ψ x φ ψ x φ ¬ ψ x φ
11 8 9 10 3bitr2i x φ ψ φ ¬ ψ x φ x φ ψ x φ ¬ ψ x φ
12 6 11 mtbi ¬ x φ ψ x φ ¬ ψ x φ