Metamath Proof Explorer


Theorem alsi-no-surprise

Description: Demonstrate that there is never a "surprise" when using the allsome quantifier, that is, it is never possible for the consequent to be both always true and always false. This uses the definition of df-alsi ; the proof itself builds on alimp-no-surprise . For a contrast, see alimp-surprise . (Contributed by David A. Wheeler, 27-Oct-2018)

Ref Expression
Assertion alsi-no-surprise ¬ ∀! x φ ψ ∀! x φ ¬ ψ

Proof

Step Hyp Ref Expression
1 alimp-no-surprise ¬ x φ ψ x φ ¬ ψ x φ
2 df-alsi ∀! x φ ψ x φ ψ x φ
3 df-alsi ∀! x φ ¬ ψ x φ ¬ ψ x φ
4 2 3 anbi12i ∀! x φ ψ ∀! x φ ¬ ψ x φ ψ x φ x φ ¬ ψ x φ
5 anandi3r x φ ψ x φ x φ ¬ ψ x φ ψ x φ x φ ¬ ψ x φ
6 3ancomb x φ ψ x φ x φ ¬ ψ x φ ψ x φ ¬ ψ x φ
7 4 5 6 3bitr2i ∀! x φ ψ ∀! x φ ¬ ψ x φ ψ x φ ¬ ψ x φ
8 1 7 mtbir ¬ ∀! x φ ψ ∀! x φ ¬ ψ