Metamath Proof Explorer


Theorem alsc2d

Description: Deduction rule: Given "all some" applied to a class, you can extract the "there exists" part. (Contributed by David A. Wheeler, 20-Oct-2018)

Ref Expression
Hypothesis alsc2d.1 φ ∀! x A ψ
Assertion alsc2d φ x x A

Proof

Step Hyp Ref Expression
1 alsc2d.1 φ ∀! x A ψ
2 df-alsc ∀! x A ψ x A ψ x x A
3 1 2 sylib φ x A ψ x x A
4 3 simprd φ x x A