| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ang.1 |
|- F = ( x e. ( CC \ { 0 } ) , y e. ( CC \ { 0 } ) |-> ( Im ` ( log ` ( y / x ) ) ) ) |
| 2 |
|
angrtmuld.1 |
|- ( ph -> X e. CC ) |
| 3 |
|
angrtmuld.2 |
|- ( ph -> Y e. CC ) |
| 4 |
|
angrtmuld.3 |
|- ( ph -> Z e. CC ) |
| 5 |
|
angrtmuld.4 |
|- ( ph -> X =/= 0 ) |
| 6 |
|
angrtmuld.5 |
|- ( ph -> Y =/= 0 ) |
| 7 |
|
angrtmuld.6 |
|- ( ph -> Z =/= 0 ) |
| 8 |
|
angrtmuld.7 |
|- ( ph -> ( Z / Y ) e. RR ) |
| 9 |
4 3 7 6
|
divne0d |
|- ( ph -> ( Z / Y ) =/= 0 ) |
| 10 |
9
|
neneqd |
|- ( ph -> -. ( Z / Y ) = 0 ) |
| 11 |
|
biorf |
|- ( -. ( Z / Y ) = 0 -> ( ( Re ` ( Y / X ) ) = 0 <-> ( ( Z / Y ) = 0 \/ ( Re ` ( Y / X ) ) = 0 ) ) ) |
| 12 |
10 11
|
syl |
|- ( ph -> ( ( Re ` ( Y / X ) ) = 0 <-> ( ( Z / Y ) = 0 \/ ( Re ` ( Y / X ) ) = 0 ) ) ) |
| 13 |
1 2 5 3 6
|
angrteqvd |
|- ( ph -> ( ( X F Y ) e. { ( _pi / 2 ) , -u ( _pi / 2 ) } <-> ( Re ` ( Y / X ) ) = 0 ) ) |
| 14 |
1 2 5 4 7
|
angrteqvd |
|- ( ph -> ( ( X F Z ) e. { ( _pi / 2 ) , -u ( _pi / 2 ) } <-> ( Re ` ( Z / X ) ) = 0 ) ) |
| 15 |
4 3 2 6 5
|
dmdcan2d |
|- ( ph -> ( ( Z / Y ) x. ( Y / X ) ) = ( Z / X ) ) |
| 16 |
15
|
fveq2d |
|- ( ph -> ( Re ` ( ( Z / Y ) x. ( Y / X ) ) ) = ( Re ` ( Z / X ) ) ) |
| 17 |
3 2 5
|
divcld |
|- ( ph -> ( Y / X ) e. CC ) |
| 18 |
8 17
|
remul2d |
|- ( ph -> ( Re ` ( ( Z / Y ) x. ( Y / X ) ) ) = ( ( Z / Y ) x. ( Re ` ( Y / X ) ) ) ) |
| 19 |
16 18
|
eqtr3d |
|- ( ph -> ( Re ` ( Z / X ) ) = ( ( Z / Y ) x. ( Re ` ( Y / X ) ) ) ) |
| 20 |
19
|
eqeq1d |
|- ( ph -> ( ( Re ` ( Z / X ) ) = 0 <-> ( ( Z / Y ) x. ( Re ` ( Y / X ) ) ) = 0 ) ) |
| 21 |
4 3 6
|
divcld |
|- ( ph -> ( Z / Y ) e. CC ) |
| 22 |
17
|
recld |
|- ( ph -> ( Re ` ( Y / X ) ) e. RR ) |
| 23 |
22
|
recnd |
|- ( ph -> ( Re ` ( Y / X ) ) e. CC ) |
| 24 |
21 23
|
mul0ord |
|- ( ph -> ( ( ( Z / Y ) x. ( Re ` ( Y / X ) ) ) = 0 <-> ( ( Z / Y ) = 0 \/ ( Re ` ( Y / X ) ) = 0 ) ) ) |
| 25 |
14 20 24
|
3bitrd |
|- ( ph -> ( ( X F Z ) e. { ( _pi / 2 ) , -u ( _pi / 2 ) } <-> ( ( Z / Y ) = 0 \/ ( Re ` ( Y / X ) ) = 0 ) ) ) |
| 26 |
12 13 25
|
3bitr4d |
|- ( ph -> ( ( X F Y ) e. { ( _pi / 2 ) , -u ( _pi / 2 ) } <-> ( X F Z ) e. { ( _pi / 2 ) , -u ( _pi / 2 ) } ) ) |