Metamath Proof Explorer


Theorem antnestlaw1

Description: A law of nested antecedents. The converse direction is a subschema of pm2.27 . (Contributed by Adrian Ducourtial, 5-Dec-2025)

Ref Expression
Assertion antnestlaw1
|- ( ( ( ( ph -> ps ) -> ps ) -> ps ) <-> ( ph -> ps ) )

Proof

Step Hyp Ref Expression
1 pm2.21
 |-  ( -. ( ph -> ps ) -> ( ( ph -> ps ) -> ps ) )
2 conax1
 |-  ( -. ( ph -> ps ) -> -. ps )
3 1 2 jcnd
 |-  ( -. ( ph -> ps ) -> -. ( ( ( ph -> ps ) -> ps ) -> ps ) )
4 3 con4i
 |-  ( ( ( ( ph -> ps ) -> ps ) -> ps ) -> ( ph -> ps ) )
5 pm2.27
 |-  ( ( ph -> ps ) -> ( ( ( ph -> ps ) -> ps ) -> ps ) )
6 4 5 impbii
 |-  ( ( ( ( ph -> ps ) -> ps ) -> ps ) <-> ( ph -> ps ) )