Metamath Proof Explorer


Theorem antnestlaw1

Description: A law of nested antecedents. The converse direction is a subschema of pm2.27 . (Contributed by Adrian Ducourtial, 5-Dec-2025)

Ref Expression
Assertion antnestlaw1 φ ψ ψ ψ φ ψ

Proof

Step Hyp Ref Expression
1 pm2.21 ¬ φ ψ φ ψ ψ
2 conax1 ¬ φ ψ ¬ ψ
3 1 2 jcnd ¬ φ ψ ¬ φ ψ ψ ψ
4 3 con4i φ ψ ψ ψ φ ψ
5 pm2.27 φ ψ φ ψ ψ ψ
6 4 5 impbii φ ψ ψ ψ φ ψ