Description: A law of nested antecedents. The converse direction is a subschema of pm2.27 . (Contributed by Adrian Ducourtial, 5-Dec-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | antnestlaw1 | ⊢ ( ( ( ( 𝜑 → 𝜓 ) → 𝜓 ) → 𝜓 ) ↔ ( 𝜑 → 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.21 | ⊢ ( ¬ ( 𝜑 → 𝜓 ) → ( ( 𝜑 → 𝜓 ) → 𝜓 ) ) | |
| 2 | conax1 | ⊢ ( ¬ ( 𝜑 → 𝜓 ) → ¬ 𝜓 ) | |
| 3 | 1 2 | jcnd | ⊢ ( ¬ ( 𝜑 → 𝜓 ) → ¬ ( ( ( 𝜑 → 𝜓 ) → 𝜓 ) → 𝜓 ) ) |
| 4 | 3 | con4i | ⊢ ( ( ( ( 𝜑 → 𝜓 ) → 𝜓 ) → 𝜓 ) → ( 𝜑 → 𝜓 ) ) |
| 5 | pm2.27 | ⊢ ( ( 𝜑 → 𝜓 ) → ( ( ( 𝜑 → 𝜓 ) → 𝜓 ) → 𝜓 ) ) | |
| 6 | 4 5 | impbii | ⊢ ( ( ( ( 𝜑 → 𝜓 ) → 𝜓 ) → 𝜓 ) ↔ ( 𝜑 → 𝜓 ) ) |