Metamath Proof Explorer


Theorem antnestlaw1

Description: A law of nested antecedents. The converse direction is a subschema of pm2.27 . (Contributed by Adrian Ducourtial, 5-Dec-2025)

Ref Expression
Assertion antnestlaw1 ( ( ( ( 𝜑𝜓 ) → 𝜓 ) → 𝜓 ) ↔ ( 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 pm2.21 ( ¬ ( 𝜑𝜓 ) → ( ( 𝜑𝜓 ) → 𝜓 ) )
2 conax1 ( ¬ ( 𝜑𝜓 ) → ¬ 𝜓 )
3 1 2 jcnd ( ¬ ( 𝜑𝜓 ) → ¬ ( ( ( 𝜑𝜓 ) → 𝜓 ) → 𝜓 ) )
4 3 con4i ( ( ( ( 𝜑𝜓 ) → 𝜓 ) → 𝜓 ) → ( 𝜑𝜓 ) )
5 pm2.27 ( ( 𝜑𝜓 ) → ( ( ( 𝜑𝜓 ) → 𝜓 ) → 𝜓 ) )
6 4 5 impbii ( ( ( ( 𝜑𝜓 ) → 𝜓 ) → 𝜓 ) ↔ ( 𝜑𝜓 ) )