Metamath Proof Explorer


Theorem antnestlaw2

Description: A law of nested antecedents. (Contributed by Adrian Ducourtial, 5-Dec-2025)

Ref Expression
Assertion antnestlaw2 ( ( ( ( 𝜑𝜓 ) → 𝜓 ) → 𝜒 ) ↔ ( ( ( 𝜑𝜒 ) → 𝜓 ) → 𝜒 ) )

Proof

Step Hyp Ref Expression
1 pm2.27 ( 𝜑 → ( ( 𝜑𝜓 ) → 𝜓 ) )
2 1 a1d ( 𝜑 → ( ¬ ( ( ( 𝜑𝜒 ) → 𝜓 ) → 𝜒 ) → ( ( 𝜑𝜓 ) → 𝜓 ) ) )
3 pm2.21 ( ¬ 𝜑 → ( 𝜑𝜒 ) )
4 3 a1d ( ¬ 𝜑 → ( ¬ ( ( ( 𝜑𝜒 ) → 𝜓 ) → 𝜒 ) → ( 𝜑𝜒 ) ) )
5 simplim ( ¬ ( ( ( 𝜑𝜒 ) → 𝜓 ) → 𝜒 ) → ( ( 𝜑𝜒 ) → 𝜓 ) )
6 4 5 sylcom ( ¬ 𝜑 → ( ¬ ( ( ( 𝜑𝜒 ) → 𝜓 ) → 𝜒 ) → 𝜓 ) )
7 6 a1dd ( ¬ 𝜑 → ( ¬ ( ( ( 𝜑𝜒 ) → 𝜓 ) → 𝜒 ) → ( ( 𝜑𝜓 ) → 𝜓 ) ) )
8 2 7 pm2.61i ( ¬ ( ( ( 𝜑𝜒 ) → 𝜓 ) → 𝜒 ) → ( ( 𝜑𝜓 ) → 𝜓 ) )
9 conax1 ( ¬ ( ( ( 𝜑𝜒 ) → 𝜓 ) → 𝜒 ) → ¬ 𝜒 )
10 8 9 jcnd ( ¬ ( ( ( 𝜑𝜒 ) → 𝜓 ) → 𝜒 ) → ¬ ( ( ( 𝜑𝜓 ) → 𝜓 ) → 𝜒 ) )
11 10 con4i ( ( ( ( 𝜑𝜓 ) → 𝜓 ) → 𝜒 ) → ( ( ( 𝜑𝜒 ) → 𝜓 ) → 𝜒 ) )
12 conax1 ( ¬ ( ( ( 𝜑𝜓 ) → 𝜓 ) → 𝜒 ) → ¬ 𝜒 )
13 con3 ( ( 𝜑𝜒 ) → ( ¬ 𝜒 → ¬ 𝜑 ) )
14 12 13 syl5com ( ¬ ( ( ( 𝜑𝜓 ) → 𝜓 ) → 𝜒 ) → ( ( 𝜑𝜒 ) → ¬ 𝜑 ) )
15 pm2.21 ( ¬ 𝜑 → ( 𝜑𝜓 ) )
16 14 15 syl6 ( ¬ ( ( ( 𝜑𝜓 ) → 𝜓 ) → 𝜒 ) → ( ( 𝜑𝜒 ) → ( 𝜑𝜓 ) ) )
17 pm2.521g2 ( ¬ ( ( ( 𝜑𝜓 ) → 𝜓 ) → 𝜒 ) → ( ( 𝜑𝜒 ) → ( ( 𝜑𝜓 ) → 𝜓 ) ) )
18 16 17 mpdd ( ¬ ( ( ( 𝜑𝜓 ) → 𝜓 ) → 𝜒 ) → ( ( 𝜑𝜒 ) → 𝜓 ) )
19 jcn ( ( ( 𝜑𝜒 ) → 𝜓 ) → ( ¬ 𝜒 → ¬ ( ( ( 𝜑𝜒 ) → 𝜓 ) → 𝜒 ) ) )
20 19 a1i ( ¬ ( ( ( 𝜑𝜓 ) → 𝜓 ) → 𝜒 ) → ( ( ( 𝜑𝜒 ) → 𝜓 ) → ( ¬ 𝜒 → ¬ ( ( ( 𝜑𝜒 ) → 𝜓 ) → 𝜒 ) ) ) )
21 18 20 mpd ( ¬ ( ( ( 𝜑𝜓 ) → 𝜓 ) → 𝜒 ) → ( ¬ 𝜒 → ¬ ( ( ( 𝜑𝜒 ) → 𝜓 ) → 𝜒 ) ) )
22 12 21 mpd ( ¬ ( ( ( 𝜑𝜓 ) → 𝜓 ) → 𝜒 ) → ¬ ( ( ( 𝜑𝜒 ) → 𝜓 ) → 𝜒 ) )
23 22 con4i ( ( ( ( 𝜑𝜒 ) → 𝜓 ) → 𝜒 ) → ( ( ( 𝜑𝜓 ) → 𝜓 ) → 𝜒 ) )
24 11 23 impbii ( ( ( ( 𝜑𝜓 ) → 𝜓 ) → 𝜒 ) ↔ ( ( ( 𝜑𝜒 ) → 𝜓 ) → 𝜒 ) )