Metamath Proof Explorer


Theorem antnestlaw3

Description: A law of nested antecedents. Compare with looinv . (Contributed by Adrian Ducourtial, 5-Dec-2025)

Ref Expression
Assertion antnestlaw3 ( ( ( ( 𝜑𝜓 ) → 𝜒 ) → 𝜒 ) ↔ ( ( ( 𝜑𝜒 ) → 𝜓 ) → 𝜓 ) )

Proof

Step Hyp Ref Expression
1 antnestlaw3lem ( ¬ ( ( ( 𝜑𝜒 ) → 𝜓 ) → 𝜓 ) → ¬ ( ( ( 𝜑𝜓 ) → 𝜒 ) → 𝜒 ) )
2 1 con4i ( ( ( ( 𝜑𝜓 ) → 𝜒 ) → 𝜒 ) → ( ( ( 𝜑𝜒 ) → 𝜓 ) → 𝜓 ) )
3 antnestlaw3lem ( ¬ ( ( ( 𝜑𝜓 ) → 𝜒 ) → 𝜒 ) → ¬ ( ( ( 𝜑𝜒 ) → 𝜓 ) → 𝜓 ) )
4 3 con4i ( ( ( ( 𝜑𝜒 ) → 𝜓 ) → 𝜓 ) → ( ( ( 𝜑𝜓 ) → 𝜒 ) → 𝜒 ) )
5 2 4 impbii ( ( ( ( 𝜑𝜓 ) → 𝜒 ) → 𝜒 ) ↔ ( ( ( 𝜑𝜒 ) → 𝜓 ) → 𝜓 ) )