Metamath Proof Explorer


Theorem antnestlaw3

Description: A law of nested antecedents. Compare with looinv . (Contributed by Adrian Ducourtial, 5-Dec-2025)

Ref Expression
Assertion antnestlaw3
|- ( ( ( ( ph -> ps ) -> ch ) -> ch ) <-> ( ( ( ph -> ch ) -> ps ) -> ps ) )

Proof

Step Hyp Ref Expression
1 antnestlaw3lem
 |-  ( -. ( ( ( ph -> ch ) -> ps ) -> ps ) -> -. ( ( ( ph -> ps ) -> ch ) -> ch ) )
2 1 con4i
 |-  ( ( ( ( ph -> ps ) -> ch ) -> ch ) -> ( ( ( ph -> ch ) -> ps ) -> ps ) )
3 antnestlaw3lem
 |-  ( -. ( ( ( ph -> ps ) -> ch ) -> ch ) -> -. ( ( ( ph -> ch ) -> ps ) -> ps ) )
4 3 con4i
 |-  ( ( ( ( ph -> ch ) -> ps ) -> ps ) -> ( ( ( ph -> ps ) -> ch ) -> ch ) )
5 2 4 impbii
 |-  ( ( ( ( ph -> ps ) -> ch ) -> ch ) <-> ( ( ( ph -> ch ) -> ps ) -> ps ) )