| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pm2.27 |
|- ( T. -> ( ( T. -> ph ) -> ph ) ) |
| 2 |
|
pm2.27 |
|- ( ( ( T. -> ph ) -> ph ) -> ( ( ( ( T. -> ph ) -> ph ) -> ps ) -> ps ) ) |
| 3 |
1 2
|
syl |
|- ( T. -> ( ( ( ( T. -> ph ) -> ph ) -> ps ) -> ps ) ) |
| 4 |
3
|
mptru |
|- ( ( ( ( T. -> ph ) -> ph ) -> ps ) -> ps ) |
| 5 |
|
antnestlaw3 |
|- ( ( ( ( ( T. -> ph ) -> ph ) -> ps ) -> ps ) <-> ( ( ( ( T. -> ph ) -> ps ) -> ph ) -> ph ) ) |
| 6 |
|
antnestlaw1 |
|- ( ( ( ( ( T. -> ph ) -> ps ) -> ps ) -> ps ) <-> ( ( T. -> ph ) -> ps ) ) |
| 7 |
6
|
imbi1i |
|- ( ( ( ( ( ( T. -> ph ) -> ps ) -> ps ) -> ps ) -> ph ) <-> ( ( ( T. -> ph ) -> ps ) -> ph ) ) |
| 8 |
7
|
imbi1i |
|- ( ( ( ( ( ( ( T. -> ph ) -> ps ) -> ps ) -> ps ) -> ph ) -> ph ) <-> ( ( ( ( T. -> ph ) -> ps ) -> ph ) -> ph ) ) |
| 9 |
5 8
|
bitr4i |
|- ( ( ( ( ( T. -> ph ) -> ph ) -> ps ) -> ps ) <-> ( ( ( ( ( ( T. -> ph ) -> ps ) -> ps ) -> ps ) -> ph ) -> ph ) ) |
| 10 |
|
antnestlaw3 |
|- ( ( ( ( ( ( ( T. -> ph ) -> ps ) -> ps ) -> ps ) -> ph ) -> ph ) <-> ( ( ( ( ( ( T. -> ph ) -> ps ) -> ps ) -> ph ) -> ps ) -> ps ) ) |
| 11 |
9 10
|
bitri |
|- ( ( ( ( ( T. -> ph ) -> ph ) -> ps ) -> ps ) <-> ( ( ( ( ( ( T. -> ph ) -> ps ) -> ps ) -> ph ) -> ps ) -> ps ) ) |
| 12 |
4 11
|
mpbi |
|- ( ( ( ( ( ( T. -> ph ) -> ps ) -> ps ) -> ph ) -> ps ) -> ps ) |