Metamath Proof Explorer


Theorem antnestALT

Description: Alternative proof of antnest from the valid schema ( ( ( ( T. -> ph ) -> ph ) -> ps ) -> ps ) using laws of nested antecedents. Our proof uses only the laws antnestlaw1 and antnestlaw3 . (Contributed by Adrian Ducourtial, 5-Dec-2025) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion antnestALT
|- ( ( ( ( ( ( T. -> ph ) -> ps ) -> ps ) -> ph ) -> ps ) -> ps )

Proof

Step Hyp Ref Expression
1 pm2.27
 |-  ( T. -> ( ( T. -> ph ) -> ph ) )
2 pm2.27
 |-  ( ( ( T. -> ph ) -> ph ) -> ( ( ( ( T. -> ph ) -> ph ) -> ps ) -> ps ) )
3 1 2 syl
 |-  ( T. -> ( ( ( ( T. -> ph ) -> ph ) -> ps ) -> ps ) )
4 3 mptru
 |-  ( ( ( ( T. -> ph ) -> ph ) -> ps ) -> ps )
5 antnestlaw3
 |-  ( ( ( ( ( T. -> ph ) -> ph ) -> ps ) -> ps ) <-> ( ( ( ( T. -> ph ) -> ps ) -> ph ) -> ph ) )
6 antnestlaw1
 |-  ( ( ( ( ( T. -> ph ) -> ps ) -> ps ) -> ps ) <-> ( ( T. -> ph ) -> ps ) )
7 6 imbi1i
 |-  ( ( ( ( ( ( T. -> ph ) -> ps ) -> ps ) -> ps ) -> ph ) <-> ( ( ( T. -> ph ) -> ps ) -> ph ) )
8 7 imbi1i
 |-  ( ( ( ( ( ( ( T. -> ph ) -> ps ) -> ps ) -> ps ) -> ph ) -> ph ) <-> ( ( ( ( T. -> ph ) -> ps ) -> ph ) -> ph ) )
9 5 8 bitr4i
 |-  ( ( ( ( ( T. -> ph ) -> ph ) -> ps ) -> ps ) <-> ( ( ( ( ( ( T. -> ph ) -> ps ) -> ps ) -> ps ) -> ph ) -> ph ) )
10 antnestlaw3
 |-  ( ( ( ( ( ( ( T. -> ph ) -> ps ) -> ps ) -> ps ) -> ph ) -> ph ) <-> ( ( ( ( ( ( T. -> ph ) -> ps ) -> ps ) -> ph ) -> ps ) -> ps ) )
11 9 10 bitri
 |-  ( ( ( ( ( T. -> ph ) -> ph ) -> ps ) -> ps ) <-> ( ( ( ( ( ( T. -> ph ) -> ps ) -> ps ) -> ph ) -> ps ) -> ps ) )
12 4 11 mpbi
 |-  ( ( ( ( ( ( T. -> ph ) -> ps ) -> ps ) -> ph ) -> ps ) -> ps )