Metamath Proof Explorer


Theorem antnest

Description: Suppose ph , ps are distinct atomic propositional formulas, and let _G be the smallest class of formulas for which T. e.G and ( ch -> ph ) , ( ch -> ps ) e. G for ch e.G . The present theorem is then an element of G , and the implications occurring in the theorem are in one-to-one correspondence with the formulas in _G up to logical equivalence. In particular, the theorem itself is equivalent to T. e. _G . (Contributed by Adrian Ducourtial, 2-Oct-2025)

Ref Expression
Assertion antnest
|- ( ( ( ( ( ( T. -> ph ) -> ps ) -> ps ) -> ph ) -> ps ) -> ps )

Proof

Step Hyp Ref Expression
1 simplim
 |-  ( -. ( ( T. -> ph ) -> ps ) -> ( T. -> ph ) )
2 conax1
 |-  ( -. ( ( ( ( ( ( T. -> ph ) -> ps ) -> ps ) -> ph ) -> ps ) -> ps ) -> -. ps )
3 simplim
 |-  ( -. ( ( ( ( ( ( T. -> ph ) -> ps ) -> ps ) -> ph ) -> ps ) -> ps ) -> ( ( ( ( ( T. -> ph ) -> ps ) -> ps ) -> ph ) -> ps ) )
4 2 3 mtod
 |-  ( -. ( ( ( ( ( ( T. -> ph ) -> ps ) -> ps ) -> ph ) -> ps ) -> ps ) -> -. ( ( ( ( T. -> ph ) -> ps ) -> ps ) -> ph ) )
5 simplim
 |-  ( -. ( ( ( ( T. -> ph ) -> ps ) -> ps ) -> ph ) -> ( ( ( T. -> ph ) -> ps ) -> ps ) )
6 4 5 syl
 |-  ( -. ( ( ( ( ( ( T. -> ph ) -> ps ) -> ps ) -> ph ) -> ps ) -> ps ) -> ( ( ( T. -> ph ) -> ps ) -> ps ) )
7 2 6 mtod
 |-  ( -. ( ( ( ( ( ( T. -> ph ) -> ps ) -> ps ) -> ph ) -> ps ) -> ps ) -> -. ( ( T. -> ph ) -> ps ) )
8 1 7 syl11
 |-  ( T. -> ( -. ( ( ( ( ( ( T. -> ph ) -> ps ) -> ps ) -> ph ) -> ps ) -> ps ) -> ph ) )
9 8 mptru
 |-  ( -. ( ( ( ( ( ( T. -> ph ) -> ps ) -> ps ) -> ph ) -> ps ) -> ps ) -> ph )
10 conax1
 |-  ( -. ( ( ( ( T. -> ph ) -> ps ) -> ps ) -> ph ) -> -. ph )
11 4 10 syl
 |-  ( -. ( ( ( ( ( ( T. -> ph ) -> ps ) -> ps ) -> ph ) -> ps ) -> ps ) -> -. ph )
12 9 11 pm2.65i
 |-  -. -. ( ( ( ( ( ( T. -> ph ) -> ps ) -> ps ) -> ph ) -> ps ) -> ps )
13 12 notnotri
 |-  ( ( ( ( ( ( T. -> ph ) -> ps ) -> ps ) -> ph ) -> ps ) -> ps )