| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simplim |
⊢ ( ¬ ( ( ⊤ → 𝜑 ) → 𝜓 ) → ( ⊤ → 𝜑 ) ) |
| 2 |
|
conax1 |
⊢ ( ¬ ( ( ( ( ( ( ⊤ → 𝜑 ) → 𝜓 ) → 𝜓 ) → 𝜑 ) → 𝜓 ) → 𝜓 ) → ¬ 𝜓 ) |
| 3 |
|
simplim |
⊢ ( ¬ ( ( ( ( ( ( ⊤ → 𝜑 ) → 𝜓 ) → 𝜓 ) → 𝜑 ) → 𝜓 ) → 𝜓 ) → ( ( ( ( ( ⊤ → 𝜑 ) → 𝜓 ) → 𝜓 ) → 𝜑 ) → 𝜓 ) ) |
| 4 |
2 3
|
mtod |
⊢ ( ¬ ( ( ( ( ( ( ⊤ → 𝜑 ) → 𝜓 ) → 𝜓 ) → 𝜑 ) → 𝜓 ) → 𝜓 ) → ¬ ( ( ( ( ⊤ → 𝜑 ) → 𝜓 ) → 𝜓 ) → 𝜑 ) ) |
| 5 |
|
simplim |
⊢ ( ¬ ( ( ( ( ⊤ → 𝜑 ) → 𝜓 ) → 𝜓 ) → 𝜑 ) → ( ( ( ⊤ → 𝜑 ) → 𝜓 ) → 𝜓 ) ) |
| 6 |
4 5
|
syl |
⊢ ( ¬ ( ( ( ( ( ( ⊤ → 𝜑 ) → 𝜓 ) → 𝜓 ) → 𝜑 ) → 𝜓 ) → 𝜓 ) → ( ( ( ⊤ → 𝜑 ) → 𝜓 ) → 𝜓 ) ) |
| 7 |
2 6
|
mtod |
⊢ ( ¬ ( ( ( ( ( ( ⊤ → 𝜑 ) → 𝜓 ) → 𝜓 ) → 𝜑 ) → 𝜓 ) → 𝜓 ) → ¬ ( ( ⊤ → 𝜑 ) → 𝜓 ) ) |
| 8 |
1 7
|
syl11 |
⊢ ( ⊤ → ( ¬ ( ( ( ( ( ( ⊤ → 𝜑 ) → 𝜓 ) → 𝜓 ) → 𝜑 ) → 𝜓 ) → 𝜓 ) → 𝜑 ) ) |
| 9 |
8
|
mptru |
⊢ ( ¬ ( ( ( ( ( ( ⊤ → 𝜑 ) → 𝜓 ) → 𝜓 ) → 𝜑 ) → 𝜓 ) → 𝜓 ) → 𝜑 ) |
| 10 |
|
conax1 |
⊢ ( ¬ ( ( ( ( ⊤ → 𝜑 ) → 𝜓 ) → 𝜓 ) → 𝜑 ) → ¬ 𝜑 ) |
| 11 |
4 10
|
syl |
⊢ ( ¬ ( ( ( ( ( ( ⊤ → 𝜑 ) → 𝜓 ) → 𝜓 ) → 𝜑 ) → 𝜓 ) → 𝜓 ) → ¬ 𝜑 ) |
| 12 |
9 11
|
pm2.65i |
⊢ ¬ ¬ ( ( ( ( ( ( ⊤ → 𝜑 ) → 𝜓 ) → 𝜓 ) → 𝜑 ) → 𝜓 ) → 𝜓 ) |
| 13 |
12
|
notnotri |
⊢ ( ( ( ( ( ( ⊤ → 𝜑 ) → 𝜓 ) → 𝜓 ) → 𝜑 ) → 𝜓 ) → 𝜓 ) |