Metamath Proof Explorer


Theorem antnestlaw3lem

Description: Lemma for antnestlaw3 . (Contributed by Adrian Ducourtial, 5-Dec-2025)

Ref Expression
Assertion antnestlaw3lem ( ¬ ( ( ( 𝜑𝜓 ) → 𝜒 ) → 𝜒 ) → ¬ ( ( ( 𝜑𝜒 ) → 𝜓 ) → 𝜓 ) )

Proof

Step Hyp Ref Expression
1 conax1 ( ¬ ( ( ( 𝜑𝜓 ) → 𝜒 ) → 𝜒 ) → ¬ 𝜒 )
2 simplim ( ¬ ( ( ( 𝜑𝜓 ) → 𝜒 ) → 𝜒 ) → ( ( 𝜑𝜓 ) → 𝜒 ) )
3 1 2 mtod ( ¬ ( ( ( 𝜑𝜓 ) → 𝜒 ) → 𝜒 ) → ¬ ( 𝜑𝜓 ) )
4 simplim ( ¬ ( 𝜑𝜓 ) → 𝜑 )
5 3 4 syl ( ¬ ( ( ( 𝜑𝜓 ) → 𝜒 ) → 𝜒 ) → 𝜑 )
6 5 1 jcnd ( ¬ ( ( ( 𝜑𝜓 ) → 𝜒 ) → 𝜒 ) → ¬ ( 𝜑𝜒 ) )
7 6 pm2.21d ( ¬ ( ( ( 𝜑𝜓 ) → 𝜒 ) → 𝜒 ) → ( ( 𝜑𝜒 ) → 𝜓 ) )
8 conax1 ( ¬ ( 𝜑𝜓 ) → ¬ 𝜓 )
9 3 8 syl ( ¬ ( ( ( 𝜑𝜓 ) → 𝜒 ) → 𝜒 ) → ¬ 𝜓 )
10 7 9 jcnd ( ¬ ( ( ( 𝜑𝜓 ) → 𝜒 ) → 𝜒 ) → ¬ ( ( ( 𝜑𝜒 ) → 𝜓 ) → 𝜓 ) )