| Step |
Hyp |
Ref |
Expression |
| 1 |
|
conax1 |
|- ( -. ( ( ( ph -> ps ) -> ch ) -> ch ) -> -. ch ) |
| 2 |
|
simplim |
|- ( -. ( ( ( ph -> ps ) -> ch ) -> ch ) -> ( ( ph -> ps ) -> ch ) ) |
| 3 |
1 2
|
mtod |
|- ( -. ( ( ( ph -> ps ) -> ch ) -> ch ) -> -. ( ph -> ps ) ) |
| 4 |
|
simplim |
|- ( -. ( ph -> ps ) -> ph ) |
| 5 |
3 4
|
syl |
|- ( -. ( ( ( ph -> ps ) -> ch ) -> ch ) -> ph ) |
| 6 |
5 1
|
jcnd |
|- ( -. ( ( ( ph -> ps ) -> ch ) -> ch ) -> -. ( ph -> ch ) ) |
| 7 |
6
|
pm2.21d |
|- ( -. ( ( ( ph -> ps ) -> ch ) -> ch ) -> ( ( ph -> ch ) -> ps ) ) |
| 8 |
|
conax1 |
|- ( -. ( ph -> ps ) -> -. ps ) |
| 9 |
3 8
|
syl |
|- ( -. ( ( ( ph -> ps ) -> ch ) -> ch ) -> -. ps ) |
| 10 |
7 9
|
jcnd |
|- ( -. ( ( ( ph -> ps ) -> ch ) -> ch ) -> -. ( ( ( ph -> ch ) -> ps ) -> ps ) ) |