Metamath Proof Explorer


Theorem antnestlaw3lem

Description: Lemma for antnestlaw3 . (Contributed by Adrian Ducourtial, 5-Dec-2025)

Ref Expression
Assertion antnestlaw3lem
|- ( -. ( ( ( ph -> ps ) -> ch ) -> ch ) -> -. ( ( ( ph -> ch ) -> ps ) -> ps ) )

Proof

Step Hyp Ref Expression
1 conax1
 |-  ( -. ( ( ( ph -> ps ) -> ch ) -> ch ) -> -. ch )
2 simplim
 |-  ( -. ( ( ( ph -> ps ) -> ch ) -> ch ) -> ( ( ph -> ps ) -> ch ) )
3 1 2 mtod
 |-  ( -. ( ( ( ph -> ps ) -> ch ) -> ch ) -> -. ( ph -> ps ) )
4 simplim
 |-  ( -. ( ph -> ps ) -> ph )
5 3 4 syl
 |-  ( -. ( ( ( ph -> ps ) -> ch ) -> ch ) -> ph )
6 5 1 jcnd
 |-  ( -. ( ( ( ph -> ps ) -> ch ) -> ch ) -> -. ( ph -> ch ) )
7 6 pm2.21d
 |-  ( -. ( ( ( ph -> ps ) -> ch ) -> ch ) -> ( ( ph -> ch ) -> ps ) )
8 conax1
 |-  ( -. ( ph -> ps ) -> -. ps )
9 3 8 syl
 |-  ( -. ( ( ( ph -> ps ) -> ch ) -> ch ) -> -. ps )
10 7 9 jcnd
 |-  ( -. ( ( ( ph -> ps ) -> ch ) -> ch ) -> -. ( ( ( ph -> ch ) -> ps ) -> ps ) )