Metamath Proof Explorer


Theorem antnest

Description: Suppose ph , ps are distinct atomic propositional formulas, and let _G be the smallest class of formulas for which T. e.G and ( ch -> ph ) , ( ch -> ps ) e. G for ch e.G . The present theorem is then an element of G , and the implications occurring in the theorem are in one-to-one correspondence with the formulas in _G up to logical equivalence. In particular, the theorem itself is equivalent to T. e. _G . (Contributed by Adrian Ducourtial, 2-Oct-2025)

Ref Expression
Assertion antnest φ ψ ψ φ ψ ψ

Proof

Step Hyp Ref Expression
1 simplim ¬ φ ψ φ
2 conax1 ¬ φ ψ ψ φ ψ ψ ¬ ψ
3 simplim ¬ φ ψ ψ φ ψ ψ φ ψ ψ φ ψ
4 2 3 mtod ¬ φ ψ ψ φ ψ ψ ¬ φ ψ ψ φ
5 simplim ¬ φ ψ ψ φ φ ψ ψ
6 4 5 syl ¬ φ ψ ψ φ ψ ψ φ ψ ψ
7 2 6 mtod ¬ φ ψ ψ φ ψ ψ ¬ φ ψ
8 1 7 syl11 ¬ φ ψ ψ φ ψ ψ φ
9 8 mptru ¬ φ ψ ψ φ ψ ψ φ
10 conax1 ¬ φ ψ ψ φ ¬ φ
11 4 10 syl ¬ φ ψ ψ φ ψ ψ ¬ φ
12 9 11 pm2.65i ¬ ¬ φ ψ ψ φ ψ ψ
13 12 notnotri φ ψ ψ φ ψ ψ