Metamath Proof Explorer


Theorem antnestALT

Description: Alternative proof of antnest from the valid schema ( ( ( ( T. -> ph ) -> ph ) -> ps ) -> ps ) using laws of nested antecedents. Our proof uses only the laws antnestlaw1 and antnestlaw3 . (Contributed by Adrian Ducourtial, 5-Dec-2025) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion antnestALT ( ( ( ( ( ( ⊤ → 𝜑 ) → 𝜓 ) → 𝜓 ) → 𝜑 ) → 𝜓 ) → 𝜓 )

Proof

Step Hyp Ref Expression
1 pm2.27 ( ⊤ → ( ( ⊤ → 𝜑 ) → 𝜑 ) )
2 pm2.27 ( ( ( ⊤ → 𝜑 ) → 𝜑 ) → ( ( ( ( ⊤ → 𝜑 ) → 𝜑 ) → 𝜓 ) → 𝜓 ) )
3 1 2 syl ( ⊤ → ( ( ( ( ⊤ → 𝜑 ) → 𝜑 ) → 𝜓 ) → 𝜓 ) )
4 3 mptru ( ( ( ( ⊤ → 𝜑 ) → 𝜑 ) → 𝜓 ) → 𝜓 )
5 antnestlaw3 ( ( ( ( ( ⊤ → 𝜑 ) → 𝜑 ) → 𝜓 ) → 𝜓 ) ↔ ( ( ( ( ⊤ → 𝜑 ) → 𝜓 ) → 𝜑 ) → 𝜑 ) )
6 antnestlaw1 ( ( ( ( ( ⊤ → 𝜑 ) → 𝜓 ) → 𝜓 ) → 𝜓 ) ↔ ( ( ⊤ → 𝜑 ) → 𝜓 ) )
7 6 imbi1i ( ( ( ( ( ( ⊤ → 𝜑 ) → 𝜓 ) → 𝜓 ) → 𝜓 ) → 𝜑 ) ↔ ( ( ( ⊤ → 𝜑 ) → 𝜓 ) → 𝜑 ) )
8 7 imbi1i ( ( ( ( ( ( ( ⊤ → 𝜑 ) → 𝜓 ) → 𝜓 ) → 𝜓 ) → 𝜑 ) → 𝜑 ) ↔ ( ( ( ( ⊤ → 𝜑 ) → 𝜓 ) → 𝜑 ) → 𝜑 ) )
9 5 8 bitr4i ( ( ( ( ( ⊤ → 𝜑 ) → 𝜑 ) → 𝜓 ) → 𝜓 ) ↔ ( ( ( ( ( ( ⊤ → 𝜑 ) → 𝜓 ) → 𝜓 ) → 𝜓 ) → 𝜑 ) → 𝜑 ) )
10 antnestlaw3 ( ( ( ( ( ( ( ⊤ → 𝜑 ) → 𝜓 ) → 𝜓 ) → 𝜓 ) → 𝜑 ) → 𝜑 ) ↔ ( ( ( ( ( ( ⊤ → 𝜑 ) → 𝜓 ) → 𝜓 ) → 𝜑 ) → 𝜓 ) → 𝜓 ) )
11 9 10 bitri ( ( ( ( ( ⊤ → 𝜑 ) → 𝜑 ) → 𝜓 ) → 𝜓 ) ↔ ( ( ( ( ( ( ⊤ → 𝜑 ) → 𝜓 ) → 𝜓 ) → 𝜑 ) → 𝜓 ) → 𝜓 ) )
12 4 11 mpbi ( ( ( ( ( ( ⊤ → 𝜑 ) → 𝜓 ) → 𝜓 ) → 𝜑 ) → 𝜓 ) → 𝜓 )