| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pm2.27 |
⊢ ( ⊤ → ( ( ⊤ → 𝜑 ) → 𝜑 ) ) |
| 2 |
|
pm2.27 |
⊢ ( ( ( ⊤ → 𝜑 ) → 𝜑 ) → ( ( ( ( ⊤ → 𝜑 ) → 𝜑 ) → 𝜓 ) → 𝜓 ) ) |
| 3 |
1 2
|
syl |
⊢ ( ⊤ → ( ( ( ( ⊤ → 𝜑 ) → 𝜑 ) → 𝜓 ) → 𝜓 ) ) |
| 4 |
3
|
mptru |
⊢ ( ( ( ( ⊤ → 𝜑 ) → 𝜑 ) → 𝜓 ) → 𝜓 ) |
| 5 |
|
antnestlaw3 |
⊢ ( ( ( ( ( ⊤ → 𝜑 ) → 𝜑 ) → 𝜓 ) → 𝜓 ) ↔ ( ( ( ( ⊤ → 𝜑 ) → 𝜓 ) → 𝜑 ) → 𝜑 ) ) |
| 6 |
|
antnestlaw1 |
⊢ ( ( ( ( ( ⊤ → 𝜑 ) → 𝜓 ) → 𝜓 ) → 𝜓 ) ↔ ( ( ⊤ → 𝜑 ) → 𝜓 ) ) |
| 7 |
6
|
imbi1i |
⊢ ( ( ( ( ( ( ⊤ → 𝜑 ) → 𝜓 ) → 𝜓 ) → 𝜓 ) → 𝜑 ) ↔ ( ( ( ⊤ → 𝜑 ) → 𝜓 ) → 𝜑 ) ) |
| 8 |
7
|
imbi1i |
⊢ ( ( ( ( ( ( ( ⊤ → 𝜑 ) → 𝜓 ) → 𝜓 ) → 𝜓 ) → 𝜑 ) → 𝜑 ) ↔ ( ( ( ( ⊤ → 𝜑 ) → 𝜓 ) → 𝜑 ) → 𝜑 ) ) |
| 9 |
5 8
|
bitr4i |
⊢ ( ( ( ( ( ⊤ → 𝜑 ) → 𝜑 ) → 𝜓 ) → 𝜓 ) ↔ ( ( ( ( ( ( ⊤ → 𝜑 ) → 𝜓 ) → 𝜓 ) → 𝜓 ) → 𝜑 ) → 𝜑 ) ) |
| 10 |
|
antnestlaw3 |
⊢ ( ( ( ( ( ( ( ⊤ → 𝜑 ) → 𝜓 ) → 𝜓 ) → 𝜓 ) → 𝜑 ) → 𝜑 ) ↔ ( ( ( ( ( ( ⊤ → 𝜑 ) → 𝜓 ) → 𝜓 ) → 𝜑 ) → 𝜓 ) → 𝜓 ) ) |
| 11 |
9 10
|
bitri |
⊢ ( ( ( ( ( ⊤ → 𝜑 ) → 𝜑 ) → 𝜓 ) → 𝜓 ) ↔ ( ( ( ( ( ( ⊤ → 𝜑 ) → 𝜓 ) → 𝜓 ) → 𝜑 ) → 𝜓 ) → 𝜓 ) ) |
| 12 |
4 11
|
mpbi |
⊢ ( ( ( ( ( ( ⊤ → 𝜑 ) → 𝜓 ) → 𝜓 ) → 𝜑 ) → 𝜓 ) → 𝜓 ) |