Description: Lemma for dfac11 . ( R1A ) is well-orderable. (Contributed by Stefan O'Rear, 20-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | aomclem6.b | |- B = { <. a , b >. | E. c e. ( R1 ` U. dom z ) ( ( c e. b /\ -. c e. a ) /\ A. d e. ( R1 ` U. dom z ) ( d ( z ` U. dom z ) c -> ( d e. a <-> d e. b ) ) ) } |
|
| aomclem6.c | |- C = ( a e. _V |-> sup ( ( y ` a ) , ( R1 ` dom z ) , B ) ) |
||
| aomclem6.d | |- D = recs ( ( a e. _V |-> ( C ` ( ( R1 ` dom z ) \ ran a ) ) ) ) |
||
| aomclem6.e | |- E = { <. a , b >. | |^| ( `' D " { a } ) e. |^| ( `' D " { b } ) } |
||
| aomclem6.f | |- F = { <. a , b >. | ( ( rank ` a ) _E ( rank ` b ) \/ ( ( rank ` a ) = ( rank ` b ) /\ a ( z ` suc ( rank ` a ) ) b ) ) } |
||
| aomclem6.g | |- G = ( if ( dom z = U. dom z , F , E ) i^i ( ( R1 ` dom z ) X. ( R1 ` dom z ) ) ) |
||
| aomclem6.h | |- H = recs ( ( z e. _V |-> G ) ) |
||
| aomclem6.a | |- ( ph -> A e. On ) |
||
| aomclem6.y | |- ( ph -> A. a e. ~P ( R1 ` A ) ( a =/= (/) -> ( y ` a ) e. ( ( ~P a i^i Fin ) \ { (/) } ) ) ) |
||
| Assertion | aomclem7 | |- ( ph -> E. b b We ( R1 ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aomclem6.b | |- B = { <. a , b >. | E. c e. ( R1 ` U. dom z ) ( ( c e. b /\ -. c e. a ) /\ A. d e. ( R1 ` U. dom z ) ( d ( z ` U. dom z ) c -> ( d e. a <-> d e. b ) ) ) } |
|
| 2 | aomclem6.c | |- C = ( a e. _V |-> sup ( ( y ` a ) , ( R1 ` dom z ) , B ) ) |
|
| 3 | aomclem6.d | |- D = recs ( ( a e. _V |-> ( C ` ( ( R1 ` dom z ) \ ran a ) ) ) ) |
|
| 4 | aomclem6.e | |- E = { <. a , b >. | |^| ( `' D " { a } ) e. |^| ( `' D " { b } ) } |
|
| 5 | aomclem6.f | |- F = { <. a , b >. | ( ( rank ` a ) _E ( rank ` b ) \/ ( ( rank ` a ) = ( rank ` b ) /\ a ( z ` suc ( rank ` a ) ) b ) ) } |
|
| 6 | aomclem6.g | |- G = ( if ( dom z = U. dom z , F , E ) i^i ( ( R1 ` dom z ) X. ( R1 ` dom z ) ) ) |
|
| 7 | aomclem6.h | |- H = recs ( ( z e. _V |-> G ) ) |
|
| 8 | aomclem6.a | |- ( ph -> A e. On ) |
|
| 9 | aomclem6.y | |- ( ph -> A. a e. ~P ( R1 ` A ) ( a =/= (/) -> ( y ` a ) e. ( ( ~P a i^i Fin ) \ { (/) } ) ) ) |
|
| 10 | 1 2 3 4 5 6 7 8 9 | aomclem6 | |- ( ph -> ( H ` A ) We ( R1 ` A ) ) |
| 11 | fvex | |- ( H ` A ) e. _V |
|
| 12 | weeq1 | |- ( b = ( H ` A ) -> ( b We ( R1 ` A ) <-> ( H ` A ) We ( R1 ` A ) ) ) |
|
| 13 | 11 12 | spcev | |- ( ( H ` A ) We ( R1 ` A ) -> E. b b We ( R1 ` A ) ) |
| 14 | 10 13 | syl | |- ( ph -> E. b b We ( R1 ` A ) ) |