Metamath Proof Explorer


Theorem aovvoveq

Description: The alternative value of the operation on an ordered pair equals the operation's value on this ordered pair. (Contributed by Alexander van der Vekens, 26-May-2017)

Ref Expression
Assertion aovvoveq
|- ( (( A F B )) e. C -> (( A F B )) = ( A F B ) )

Proof

Step Hyp Ref Expression
1 df-aov
 |-  (( A F B )) = ( F ''' <. A , B >. )
2 1 eleq1i
 |-  ( (( A F B )) e. C <-> ( F ''' <. A , B >. ) e. C )
3 afvvfveq
 |-  ( ( F ''' <. A , B >. ) e. C -> ( F ''' <. A , B >. ) = ( F ` <. A , B >. ) )
4 df-ov
 |-  ( A F B ) = ( F ` <. A , B >. )
5 3 1 4 3eqtr4g
 |-  ( ( F ''' <. A , B >. ) e. C -> (( A F B )) = ( A F B ) )
6 2 5 sylbi
 |-  ( (( A F B )) e. C -> (( A F B )) = ( A F B ) )