Metamath Proof Explorer


Theorem afvvfveq

Description: The value of the alternative function at a set as argument equals the function's value at this argument. (Contributed by Alexander van der Vekens, 25-May-2017)

Ref Expression
Assertion afvvfveq
|- ( ( F ''' A ) e. B -> ( F ''' A ) = ( F ` A ) )

Proof

Step Hyp Ref Expression
1 nvelim
 |-  ( ( F ''' A ) = _V -> -. ( F ''' A ) e. B )
2 1 necon2ai
 |-  ( ( F ''' A ) e. B -> ( F ''' A ) =/= _V )
3 afvnufveq
 |-  ( ( F ''' A ) =/= _V -> ( F ''' A ) = ( F ` A ) )
4 2 3 syl
 |-  ( ( F ''' A ) e. B -> ( F ''' A ) = ( F ` A ) )