Metamath Proof Explorer


Theorem afvvfveq

Description: The value of the alternative function at a set as argument equals the function's value at this argument. (Contributed by Alexander van der Vekens, 25-May-2017)

Ref Expression
Assertion afvvfveq F'''ABF'''A=FA

Proof

Step Hyp Ref Expression
1 nvelim F'''A=V¬F'''AB
2 1 necon2ai F'''ABF'''AV
3 afvnufveq F'''AVF'''A=FA
4 2 3 syl F'''ABF'''A=FA