Metamath Proof Explorer


Theorem afv0fv0

Description: If the value of the alternative function at an argument is the empty set, the function's value at this argument is the empty set. (Contributed by Alexander van der Vekens, 25-May-2017)

Ref Expression
Assertion afv0fv0
|- ( ( F ''' A ) = (/) -> ( F ` A ) = (/) )

Proof

Step Hyp Ref Expression
1 0ex
 |-  (/) e. _V
2 eleq1a
 |-  ( (/) e. _V -> ( ( F ''' A ) = (/) -> ( F ''' A ) e. _V ) )
3 1 2 ax-mp
 |-  ( ( F ''' A ) = (/) -> ( F ''' A ) e. _V )
4 afvvfveq
 |-  ( ( F ''' A ) e. _V -> ( F ''' A ) = ( F ` A ) )
5 eqeq1
 |-  ( ( F ''' A ) = ( F ` A ) -> ( ( F ''' A ) = (/) <-> ( F ` A ) = (/) ) )
6 5 biimpd
 |-  ( ( F ''' A ) = ( F ` A ) -> ( ( F ''' A ) = (/) -> ( F ` A ) = (/) ) )
7 4 6 syl
 |-  ( ( F ''' A ) e. _V -> ( ( F ''' A ) = (/) -> ( F ` A ) = (/) ) )
8 3 7 mpcom
 |-  ( ( F ''' A ) = (/) -> ( F ` A ) = (/) )