| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0ex |
|- (/) e. _V |
| 2 |
|
eleq1a |
|- ( (/) e. _V -> ( ( F ''' A ) = (/) -> ( F ''' A ) e. _V ) ) |
| 3 |
1 2
|
ax-mp |
|- ( ( F ''' A ) = (/) -> ( F ''' A ) e. _V ) |
| 4 |
|
afvvfveq |
|- ( ( F ''' A ) e. _V -> ( F ''' A ) = ( F ` A ) ) |
| 5 |
|
eqeq1 |
|- ( ( F ''' A ) = ( F ` A ) -> ( ( F ''' A ) = (/) <-> ( F ` A ) = (/) ) ) |
| 6 |
5
|
biimpd |
|- ( ( F ''' A ) = ( F ` A ) -> ( ( F ''' A ) = (/) -> ( F ` A ) = (/) ) ) |
| 7 |
4 6
|
syl |
|- ( ( F ''' A ) e. _V -> ( ( F ''' A ) = (/) -> ( F ` A ) = (/) ) ) |
| 8 |
3 7
|
mpcom |
|- ( ( F ''' A ) = (/) -> ( F ` A ) = (/) ) |