Step |
Hyp |
Ref |
Expression |
1 |
|
0ex |
|- (/) e. _V |
2 |
|
eleq1a |
|- ( (/) e. _V -> ( ( F ''' A ) = (/) -> ( F ''' A ) e. _V ) ) |
3 |
1 2
|
ax-mp |
|- ( ( F ''' A ) = (/) -> ( F ''' A ) e. _V ) |
4 |
|
afvvfveq |
|- ( ( F ''' A ) e. _V -> ( F ''' A ) = ( F ` A ) ) |
5 |
|
eqeq1 |
|- ( ( F ''' A ) = ( F ` A ) -> ( ( F ''' A ) = (/) <-> ( F ` A ) = (/) ) ) |
6 |
5
|
biimpd |
|- ( ( F ''' A ) = ( F ` A ) -> ( ( F ''' A ) = (/) -> ( F ` A ) = (/) ) ) |
7 |
4 6
|
syl |
|- ( ( F ''' A ) e. _V -> ( ( F ''' A ) = (/) -> ( F ` A ) = (/) ) ) |
8 |
3 7
|
mpcom |
|- ( ( F ''' A ) = (/) -> ( F ` A ) = (/) ) |