Description: If the value of the alternative function at an argument is the empty set, the function's value at this argument is the empty set. (Contributed by Alexander van der Vekens, 25-May-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | afv0fv0 | ⊢ ( ( 𝐹 ''' 𝐴 ) = ∅ → ( 𝐹 ‘ 𝐴 ) = ∅ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex | ⊢ ∅ ∈ V | |
2 | eleq1a | ⊢ ( ∅ ∈ V → ( ( 𝐹 ''' 𝐴 ) = ∅ → ( 𝐹 ''' 𝐴 ) ∈ V ) ) | |
3 | 1 2 | ax-mp | ⊢ ( ( 𝐹 ''' 𝐴 ) = ∅ → ( 𝐹 ''' 𝐴 ) ∈ V ) |
4 | afvvfveq | ⊢ ( ( 𝐹 ''' 𝐴 ) ∈ V → ( 𝐹 ''' 𝐴 ) = ( 𝐹 ‘ 𝐴 ) ) | |
5 | eqeq1 | ⊢ ( ( 𝐹 ''' 𝐴 ) = ( 𝐹 ‘ 𝐴 ) → ( ( 𝐹 ''' 𝐴 ) = ∅ ↔ ( 𝐹 ‘ 𝐴 ) = ∅ ) ) | |
6 | 5 | biimpd | ⊢ ( ( 𝐹 ''' 𝐴 ) = ( 𝐹 ‘ 𝐴 ) → ( ( 𝐹 ''' 𝐴 ) = ∅ → ( 𝐹 ‘ 𝐴 ) = ∅ ) ) |
7 | 4 6 | syl | ⊢ ( ( 𝐹 ''' 𝐴 ) ∈ V → ( ( 𝐹 ''' 𝐴 ) = ∅ → ( 𝐹 ‘ 𝐴 ) = ∅ ) ) |
8 | 3 7 | mpcom | ⊢ ( ( 𝐹 ''' 𝐴 ) = ∅ → ( 𝐹 ‘ 𝐴 ) = ∅ ) |