Metamath Proof Explorer


Theorem afvfvn0fveq

Description: If the function's value at an argument is not the empty set, it equals the value of the alternative function at this argument. (Contributed by Alexander van der Vekens, 25-May-2017)

Ref Expression
Assertion afvfvn0fveq ( ( 𝐹𝐴 ) ≠ ∅ → ( 𝐹 ''' 𝐴 ) = ( 𝐹𝐴 ) )

Proof

Step Hyp Ref Expression
1 fvfundmfvn0 ( ( 𝐹𝐴 ) ≠ ∅ → ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) )
2 df-dfat ( 𝐹 defAt 𝐴 ↔ ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) )
3 1 2 sylibr ( ( 𝐹𝐴 ) ≠ ∅ → 𝐹 defAt 𝐴 )
4 afvfundmfveq ( 𝐹 defAt 𝐴 → ( 𝐹 ''' 𝐴 ) = ( 𝐹𝐴 ) )
5 3 4 syl ( ( 𝐹𝐴 ) ≠ ∅ → ( 𝐹 ''' 𝐴 ) = ( 𝐹𝐴 ) )