| Step |
Hyp |
Ref |
Expression |
| 1 |
|
afvvfveq |
⊢ ( ( 𝐹 ''' 𝐴 ) ∈ 𝐵 → ( 𝐹 ''' 𝐴 ) = ( 𝐹 ‘ 𝐴 ) ) |
| 2 |
|
eleq1 |
⊢ ( ( 𝐹 ''' 𝐴 ) = ( 𝐹 ‘ 𝐴 ) → ( ( 𝐹 ''' 𝐴 ) ∈ 𝐵 ↔ ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ) ) |
| 3 |
2
|
biimpd |
⊢ ( ( 𝐹 ''' 𝐴 ) = ( 𝐹 ‘ 𝐴 ) → ( ( 𝐹 ''' 𝐴 ) ∈ 𝐵 → ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ) ) |
| 4 |
1 3
|
mpcom |
⊢ ( ( 𝐹 ''' 𝐴 ) ∈ 𝐵 → ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ) |
| 5 |
|
elnelne2 |
⊢ ( ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ∧ ∅ ∉ 𝐵 ) → ( 𝐹 ‘ 𝐴 ) ≠ ∅ ) |
| 6 |
5
|
ancoms |
⊢ ( ( ∅ ∉ 𝐵 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ) → ( 𝐹 ‘ 𝐴 ) ≠ ∅ ) |
| 7 |
|
fvfundmfvn0 |
⊢ ( ( 𝐹 ‘ 𝐴 ) ≠ ∅ → ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) ) |
| 8 |
|
df-dfat |
⊢ ( 𝐹 defAt 𝐴 ↔ ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) ) |
| 9 |
|
afvfundmfveq |
⊢ ( 𝐹 defAt 𝐴 → ( 𝐹 ''' 𝐴 ) = ( 𝐹 ‘ 𝐴 ) ) |
| 10 |
8 9
|
sylbir |
⊢ ( ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) → ( 𝐹 ''' 𝐴 ) = ( 𝐹 ‘ 𝐴 ) ) |
| 11 |
|
eleq1 |
⊢ ( ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ''' 𝐴 ) → ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ↔ ( 𝐹 ''' 𝐴 ) ∈ 𝐵 ) ) |
| 12 |
11
|
eqcoms |
⊢ ( ( 𝐹 ''' 𝐴 ) = ( 𝐹 ‘ 𝐴 ) → ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ↔ ( 𝐹 ''' 𝐴 ) ∈ 𝐵 ) ) |
| 13 |
12
|
biimpd |
⊢ ( ( 𝐹 ''' 𝐴 ) = ( 𝐹 ‘ 𝐴 ) → ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 → ( 𝐹 ''' 𝐴 ) ∈ 𝐵 ) ) |
| 14 |
6 7 10 13
|
4syl |
⊢ ( ( ∅ ∉ 𝐵 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 → ( 𝐹 ''' 𝐴 ) ∈ 𝐵 ) ) |
| 15 |
14
|
ex |
⊢ ( ∅ ∉ 𝐵 → ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 → ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 → ( 𝐹 ''' 𝐴 ) ∈ 𝐵 ) ) ) |
| 16 |
15
|
pm2.43d |
⊢ ( ∅ ∉ 𝐵 → ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 → ( 𝐹 ''' 𝐴 ) ∈ 𝐵 ) ) |
| 17 |
4 16
|
impbid2 |
⊢ ( ∅ ∉ 𝐵 → ( ( 𝐹 ''' 𝐴 ) ∈ 𝐵 ↔ ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ) ) |