| Step |
Hyp |
Ref |
Expression |
| 1 |
|
afvvfveq |
|- ( ( F ''' A ) e. B -> ( F ''' A ) = ( F ` A ) ) |
| 2 |
|
eleq1 |
|- ( ( F ''' A ) = ( F ` A ) -> ( ( F ''' A ) e. B <-> ( F ` A ) e. B ) ) |
| 3 |
2
|
biimpd |
|- ( ( F ''' A ) = ( F ` A ) -> ( ( F ''' A ) e. B -> ( F ` A ) e. B ) ) |
| 4 |
1 3
|
mpcom |
|- ( ( F ''' A ) e. B -> ( F ` A ) e. B ) |
| 5 |
|
elnelne2 |
|- ( ( ( F ` A ) e. B /\ (/) e/ B ) -> ( F ` A ) =/= (/) ) |
| 6 |
5
|
ancoms |
|- ( ( (/) e/ B /\ ( F ` A ) e. B ) -> ( F ` A ) =/= (/) ) |
| 7 |
|
fvfundmfvn0 |
|- ( ( F ` A ) =/= (/) -> ( A e. dom F /\ Fun ( F |` { A } ) ) ) |
| 8 |
|
df-dfat |
|- ( F defAt A <-> ( A e. dom F /\ Fun ( F |` { A } ) ) ) |
| 9 |
|
afvfundmfveq |
|- ( F defAt A -> ( F ''' A ) = ( F ` A ) ) |
| 10 |
8 9
|
sylbir |
|- ( ( A e. dom F /\ Fun ( F |` { A } ) ) -> ( F ''' A ) = ( F ` A ) ) |
| 11 |
|
eleq1 |
|- ( ( F ` A ) = ( F ''' A ) -> ( ( F ` A ) e. B <-> ( F ''' A ) e. B ) ) |
| 12 |
11
|
eqcoms |
|- ( ( F ''' A ) = ( F ` A ) -> ( ( F ` A ) e. B <-> ( F ''' A ) e. B ) ) |
| 13 |
12
|
biimpd |
|- ( ( F ''' A ) = ( F ` A ) -> ( ( F ` A ) e. B -> ( F ''' A ) e. B ) ) |
| 14 |
6 7 10 13
|
4syl |
|- ( ( (/) e/ B /\ ( F ` A ) e. B ) -> ( ( F ` A ) e. B -> ( F ''' A ) e. B ) ) |
| 15 |
14
|
ex |
|- ( (/) e/ B -> ( ( F ` A ) e. B -> ( ( F ` A ) e. B -> ( F ''' A ) e. B ) ) ) |
| 16 |
15
|
pm2.43d |
|- ( (/) e/ B -> ( ( F ` A ) e. B -> ( F ''' A ) e. B ) ) |
| 17 |
4 16
|
impbid2 |
|- ( (/) e/ B -> ( ( F ''' A ) e. B <-> ( F ` A ) e. B ) ) |