Step |
Hyp |
Ref |
Expression |
1 |
|
ioran |
⊢ ( ¬ ( ( 𝐹 ''' 𝐴 ) = ∅ ∨ ( 𝐹 ''' 𝐴 ) = V ) ↔ ( ¬ ( 𝐹 ''' 𝐴 ) = ∅ ∧ ¬ ( 𝐹 ''' 𝐴 ) = V ) ) |
2 |
|
df-ne |
⊢ ( ( 𝐹 ''' 𝐴 ) ≠ V ↔ ¬ ( 𝐹 ''' 𝐴 ) = V ) |
3 |
|
afvnufveq |
⊢ ( ( 𝐹 ''' 𝐴 ) ≠ V → ( 𝐹 ''' 𝐴 ) = ( 𝐹 ‘ 𝐴 ) ) |
4 |
2 3
|
sylbir |
⊢ ( ¬ ( 𝐹 ''' 𝐴 ) = V → ( 𝐹 ''' 𝐴 ) = ( 𝐹 ‘ 𝐴 ) ) |
5 |
|
eqeq1 |
⊢ ( ( 𝐹 ''' 𝐴 ) = ( 𝐹 ‘ 𝐴 ) → ( ( 𝐹 ''' 𝐴 ) = ∅ ↔ ( 𝐹 ‘ 𝐴 ) = ∅ ) ) |
6 |
5
|
notbid |
⊢ ( ( 𝐹 ''' 𝐴 ) = ( 𝐹 ‘ 𝐴 ) → ( ¬ ( 𝐹 ''' 𝐴 ) = ∅ ↔ ¬ ( 𝐹 ‘ 𝐴 ) = ∅ ) ) |
7 |
6
|
biimpd |
⊢ ( ( 𝐹 ''' 𝐴 ) = ( 𝐹 ‘ 𝐴 ) → ( ¬ ( 𝐹 ''' 𝐴 ) = ∅ → ¬ ( 𝐹 ‘ 𝐴 ) = ∅ ) ) |
8 |
4 7
|
syl |
⊢ ( ¬ ( 𝐹 ''' 𝐴 ) = V → ( ¬ ( 𝐹 ''' 𝐴 ) = ∅ → ¬ ( 𝐹 ‘ 𝐴 ) = ∅ ) ) |
9 |
8
|
impcom |
⊢ ( ( ¬ ( 𝐹 ''' 𝐴 ) = ∅ ∧ ¬ ( 𝐹 ''' 𝐴 ) = V ) → ¬ ( 𝐹 ‘ 𝐴 ) = ∅ ) |
10 |
1 9
|
sylbi |
⊢ ( ¬ ( ( 𝐹 ''' 𝐴 ) = ∅ ∨ ( 𝐹 ''' 𝐴 ) = V ) → ¬ ( 𝐹 ‘ 𝐴 ) = ∅ ) |
11 |
10
|
con4i |
⊢ ( ( 𝐹 ‘ 𝐴 ) = ∅ → ( ( 𝐹 ''' 𝐴 ) = ∅ ∨ ( 𝐹 ''' 𝐴 ) = V ) ) |
12 |
|
afv0fv0 |
⊢ ( ( 𝐹 ''' 𝐴 ) = ∅ → ( 𝐹 ‘ 𝐴 ) = ∅ ) |
13 |
|
afvpcfv0 |
⊢ ( ( 𝐹 ''' 𝐴 ) = V → ( 𝐹 ‘ 𝐴 ) = ∅ ) |
14 |
12 13
|
jaoi |
⊢ ( ( ( 𝐹 ''' 𝐴 ) = ∅ ∨ ( 𝐹 ''' 𝐴 ) = V ) → ( 𝐹 ‘ 𝐴 ) = ∅ ) |
15 |
11 14
|
impbii |
⊢ ( ( 𝐹 ‘ 𝐴 ) = ∅ ↔ ( ( 𝐹 ''' 𝐴 ) = ∅ ∨ ( 𝐹 ''' 𝐴 ) = V ) ) |