Metamath Proof Explorer


Theorem afvpcfv0

Description: If the value of the alternative function at an argument is the universe, the function's value at this argument is the empty set. (Contributed by Alexander van der Vekens, 25-May-2017)

Ref Expression
Assertion afvpcfv0 ( ( 𝐹 ''' 𝐴 ) = V → ( 𝐹𝐴 ) = ∅ )

Proof

Step Hyp Ref Expression
1 dfafv2 ( 𝐹 ''' 𝐴 ) = if ( 𝐹 defAt 𝐴 , ( 𝐹𝐴 ) , V )
2 1 eqeq1i ( ( 𝐹 ''' 𝐴 ) = V ↔ if ( 𝐹 defAt 𝐴 , ( 𝐹𝐴 ) , V ) = V )
3 eqcom ( if ( 𝐹 defAt 𝐴 , ( 𝐹𝐴 ) , V ) = V ↔ V = if ( 𝐹 defAt 𝐴 , ( 𝐹𝐴 ) , V ) )
4 eqif ( V = if ( 𝐹 defAt 𝐴 , ( 𝐹𝐴 ) , V ) ↔ ( ( 𝐹 defAt 𝐴 ∧ V = ( 𝐹𝐴 ) ) ∨ ( ¬ 𝐹 defAt 𝐴 ∧ V = V ) ) )
5 3 4 bitri ( if ( 𝐹 defAt 𝐴 , ( 𝐹𝐴 ) , V ) = V ↔ ( ( 𝐹 defAt 𝐴 ∧ V = ( 𝐹𝐴 ) ) ∨ ( ¬ 𝐹 defAt 𝐴 ∧ V = V ) ) )
6 fveqvfvv ( ( 𝐹𝐴 ) = V → ( 𝐹𝐴 ) = ∅ )
7 6 eqcoms ( V = ( 𝐹𝐴 ) → ( 𝐹𝐴 ) = ∅ )
8 7 adantl ( ( 𝐹 defAt 𝐴 ∧ V = ( 𝐹𝐴 ) ) → ( 𝐹𝐴 ) = ∅ )
9 fvfundmfvn0 ( ( 𝐹𝐴 ) ≠ ∅ → ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) )
10 df-dfat ( 𝐹 defAt 𝐴 ↔ ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) )
11 9 10 sylibr ( ( 𝐹𝐴 ) ≠ ∅ → 𝐹 defAt 𝐴 )
12 11 necon1bi ( ¬ 𝐹 defAt 𝐴 → ( 𝐹𝐴 ) = ∅ )
13 12 adantr ( ( ¬ 𝐹 defAt 𝐴 ∧ V = V ) → ( 𝐹𝐴 ) = ∅ )
14 8 13 jaoi ( ( ( 𝐹 defAt 𝐴 ∧ V = ( 𝐹𝐴 ) ) ∨ ( ¬ 𝐹 defAt 𝐴 ∧ V = V ) ) → ( 𝐹𝐴 ) = ∅ )
15 5 14 sylbi ( if ( 𝐹 defAt 𝐴 , ( 𝐹𝐴 ) , V ) = V → ( 𝐹𝐴 ) = ∅ )
16 2 15 sylbi ( ( 𝐹 ''' 𝐴 ) = V → ( 𝐹𝐴 ) = ∅ )