| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfafv2 |
⊢ ( 𝐹 ''' 𝐴 ) = if ( 𝐹 defAt 𝐴 , ( 𝐹 ‘ 𝐴 ) , V ) |
| 2 |
1
|
eqeq1i |
⊢ ( ( 𝐹 ''' 𝐴 ) = V ↔ if ( 𝐹 defAt 𝐴 , ( 𝐹 ‘ 𝐴 ) , V ) = V ) |
| 3 |
|
eqcom |
⊢ ( if ( 𝐹 defAt 𝐴 , ( 𝐹 ‘ 𝐴 ) , V ) = V ↔ V = if ( 𝐹 defAt 𝐴 , ( 𝐹 ‘ 𝐴 ) , V ) ) |
| 4 |
|
eqif |
⊢ ( V = if ( 𝐹 defAt 𝐴 , ( 𝐹 ‘ 𝐴 ) , V ) ↔ ( ( 𝐹 defAt 𝐴 ∧ V = ( 𝐹 ‘ 𝐴 ) ) ∨ ( ¬ 𝐹 defAt 𝐴 ∧ V = V ) ) ) |
| 5 |
3 4
|
bitri |
⊢ ( if ( 𝐹 defAt 𝐴 , ( 𝐹 ‘ 𝐴 ) , V ) = V ↔ ( ( 𝐹 defAt 𝐴 ∧ V = ( 𝐹 ‘ 𝐴 ) ) ∨ ( ¬ 𝐹 defAt 𝐴 ∧ V = V ) ) ) |
| 6 |
|
fveqvfvv |
⊢ ( ( 𝐹 ‘ 𝐴 ) = V → ( 𝐹 ‘ 𝐴 ) = ∅ ) |
| 7 |
6
|
eqcoms |
⊢ ( V = ( 𝐹 ‘ 𝐴 ) → ( 𝐹 ‘ 𝐴 ) = ∅ ) |
| 8 |
7
|
adantl |
⊢ ( ( 𝐹 defAt 𝐴 ∧ V = ( 𝐹 ‘ 𝐴 ) ) → ( 𝐹 ‘ 𝐴 ) = ∅ ) |
| 9 |
|
fvfundmfvn0 |
⊢ ( ( 𝐹 ‘ 𝐴 ) ≠ ∅ → ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) ) |
| 10 |
|
df-dfat |
⊢ ( 𝐹 defAt 𝐴 ↔ ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) ) |
| 11 |
9 10
|
sylibr |
⊢ ( ( 𝐹 ‘ 𝐴 ) ≠ ∅ → 𝐹 defAt 𝐴 ) |
| 12 |
11
|
necon1bi |
⊢ ( ¬ 𝐹 defAt 𝐴 → ( 𝐹 ‘ 𝐴 ) = ∅ ) |
| 13 |
12
|
adantr |
⊢ ( ( ¬ 𝐹 defAt 𝐴 ∧ V = V ) → ( 𝐹 ‘ 𝐴 ) = ∅ ) |
| 14 |
8 13
|
jaoi |
⊢ ( ( ( 𝐹 defAt 𝐴 ∧ V = ( 𝐹 ‘ 𝐴 ) ) ∨ ( ¬ 𝐹 defAt 𝐴 ∧ V = V ) ) → ( 𝐹 ‘ 𝐴 ) = ∅ ) |
| 15 |
5 14
|
sylbi |
⊢ ( if ( 𝐹 defAt 𝐴 , ( 𝐹 ‘ 𝐴 ) , V ) = V → ( 𝐹 ‘ 𝐴 ) = ∅ ) |
| 16 |
2 15
|
sylbi |
⊢ ( ( 𝐹 ''' 𝐴 ) = V → ( 𝐹 ‘ 𝐴 ) = ∅ ) |