Metamath Proof Explorer


Theorem afvnufveq

Description: The value of the alternative function at a set as argument equals the function's value at this argument. (Contributed by Alexander van der Vekens, 25-May-2017)

Ref Expression
Assertion afvnufveq ( ( 𝐹 ''' 𝐴 ) ≠ V → ( 𝐹 ''' 𝐴 ) = ( 𝐹𝐴 ) )

Proof

Step Hyp Ref Expression
1 afvfundmfveq ( 𝐹 defAt 𝐴 → ( 𝐹 ''' 𝐴 ) = ( 𝐹𝐴 ) )
2 afvnfundmuv ( ¬ 𝐹 defAt 𝐴 → ( 𝐹 ''' 𝐴 ) = V )
3 1 2 nsyl5 ( ¬ ( 𝐹 ''' 𝐴 ) = ( 𝐹𝐴 ) → ( 𝐹 ''' 𝐴 ) = V )
4 3 necon1ai ( ( 𝐹 ''' 𝐴 ) ≠ V → ( 𝐹 ''' 𝐴 ) = ( 𝐹𝐴 ) )