Metamath Proof Explorer


Theorem afvnufveq

Description: The value of the alternative function at a set as argument equals the function's value at this argument. (Contributed by Alexander van der Vekens, 25-May-2017)

Ref Expression
Assertion afvnufveq
|- ( ( F ''' A ) =/= _V -> ( F ''' A ) = ( F ` A ) )

Proof

Step Hyp Ref Expression
1 afvfundmfveq
 |-  ( F defAt A -> ( F ''' A ) = ( F ` A ) )
2 afvnfundmuv
 |-  ( -. F defAt A -> ( F ''' A ) = _V )
3 1 2 nsyl5
 |-  ( -. ( F ''' A ) = ( F ` A ) -> ( F ''' A ) = _V )
4 3 necon1ai
 |-  ( ( F ''' A ) =/= _V -> ( F ''' A ) = ( F ` A ) )