Metamath Proof Explorer


Theorem afvpcfv0

Description: If the value of the alternative function at an argument is the universe, the function's value at this argument is the empty set. (Contributed by Alexander van der Vekens, 25-May-2017)

Ref Expression
Assertion afvpcfv0 F ''' A = V F A =

Proof

Step Hyp Ref Expression
1 dfafv2 F ''' A = if F defAt A F A V
2 1 eqeq1i F ''' A = V if F defAt A F A V = V
3 eqcom if F defAt A F A V = V V = if F defAt A F A V
4 eqif V = if F defAt A F A V F defAt A V = F A ¬ F defAt A V = V
5 3 4 bitri if F defAt A F A V = V F defAt A V = F A ¬ F defAt A V = V
6 fveqvfvv F A = V F A =
7 6 eqcoms V = F A F A =
8 7 adantl F defAt A V = F A F A =
9 fvfundmfvn0 F A A dom F Fun F A
10 df-dfat F defAt A A dom F Fun F A
11 9 10 sylibr F A F defAt A
12 11 necon1bi ¬ F defAt A F A =
13 12 adantr ¬ F defAt A V = V F A =
14 8 13 jaoi F defAt A V = F A ¬ F defAt A V = V F A =
15 5 14 sylbi if F defAt A F A V = V F A =
16 2 15 sylbi F ''' A = V F A =