Step |
Hyp |
Ref |
Expression |
1 |
|
dfafv2 |
|- ( F ''' A ) = if ( F defAt A , ( F ` A ) , _V ) |
2 |
1
|
eqeq1i |
|- ( ( F ''' A ) = _V <-> if ( F defAt A , ( F ` A ) , _V ) = _V ) |
3 |
|
eqcom |
|- ( if ( F defAt A , ( F ` A ) , _V ) = _V <-> _V = if ( F defAt A , ( F ` A ) , _V ) ) |
4 |
|
eqif |
|- ( _V = if ( F defAt A , ( F ` A ) , _V ) <-> ( ( F defAt A /\ _V = ( F ` A ) ) \/ ( -. F defAt A /\ _V = _V ) ) ) |
5 |
3 4
|
bitri |
|- ( if ( F defAt A , ( F ` A ) , _V ) = _V <-> ( ( F defAt A /\ _V = ( F ` A ) ) \/ ( -. F defAt A /\ _V = _V ) ) ) |
6 |
|
fveqvfvv |
|- ( ( F ` A ) = _V -> ( F ` A ) = (/) ) |
7 |
6
|
eqcoms |
|- ( _V = ( F ` A ) -> ( F ` A ) = (/) ) |
8 |
7
|
adantl |
|- ( ( F defAt A /\ _V = ( F ` A ) ) -> ( F ` A ) = (/) ) |
9 |
|
fvfundmfvn0 |
|- ( ( F ` A ) =/= (/) -> ( A e. dom F /\ Fun ( F |` { A } ) ) ) |
10 |
|
df-dfat |
|- ( F defAt A <-> ( A e. dom F /\ Fun ( F |` { A } ) ) ) |
11 |
9 10
|
sylibr |
|- ( ( F ` A ) =/= (/) -> F defAt A ) |
12 |
11
|
necon1bi |
|- ( -. F defAt A -> ( F ` A ) = (/) ) |
13 |
12
|
adantr |
|- ( ( -. F defAt A /\ _V = _V ) -> ( F ` A ) = (/) ) |
14 |
8 13
|
jaoi |
|- ( ( ( F defAt A /\ _V = ( F ` A ) ) \/ ( -. F defAt A /\ _V = _V ) ) -> ( F ` A ) = (/) ) |
15 |
5 14
|
sylbi |
|- ( if ( F defAt A , ( F ` A ) , _V ) = _V -> ( F ` A ) = (/) ) |
16 |
2 15
|
sylbi |
|- ( ( F ''' A ) = _V -> ( F ` A ) = (/) ) |