Metamath Proof Explorer


Theorem afvpcfv0

Description: If the value of the alternative function at an argument is the universe, the function's value at this argument is the empty set. (Contributed by Alexander van der Vekens, 25-May-2017)

Ref Expression
Assertion afvpcfv0
|- ( ( F ''' A ) = _V -> ( F ` A ) = (/) )

Proof

Step Hyp Ref Expression
1 dfafv2
 |-  ( F ''' A ) = if ( F defAt A , ( F ` A ) , _V )
2 1 eqeq1i
 |-  ( ( F ''' A ) = _V <-> if ( F defAt A , ( F ` A ) , _V ) = _V )
3 eqcom
 |-  ( if ( F defAt A , ( F ` A ) , _V ) = _V <-> _V = if ( F defAt A , ( F ` A ) , _V ) )
4 eqif
 |-  ( _V = if ( F defAt A , ( F ` A ) , _V ) <-> ( ( F defAt A /\ _V = ( F ` A ) ) \/ ( -. F defAt A /\ _V = _V ) ) )
5 3 4 bitri
 |-  ( if ( F defAt A , ( F ` A ) , _V ) = _V <-> ( ( F defAt A /\ _V = ( F ` A ) ) \/ ( -. F defAt A /\ _V = _V ) ) )
6 fveqvfvv
 |-  ( ( F ` A ) = _V -> ( F ` A ) = (/) )
7 6 eqcoms
 |-  ( _V = ( F ` A ) -> ( F ` A ) = (/) )
8 7 adantl
 |-  ( ( F defAt A /\ _V = ( F ` A ) ) -> ( F ` A ) = (/) )
9 fvfundmfvn0
 |-  ( ( F ` A ) =/= (/) -> ( A e. dom F /\ Fun ( F |` { A } ) ) )
10 df-dfat
 |-  ( F defAt A <-> ( A e. dom F /\ Fun ( F |` { A } ) ) )
11 9 10 sylibr
 |-  ( ( F ` A ) =/= (/) -> F defAt A )
12 11 necon1bi
 |-  ( -. F defAt A -> ( F ` A ) = (/) )
13 12 adantr
 |-  ( ( -. F defAt A /\ _V = _V ) -> ( F ` A ) = (/) )
14 8 13 jaoi
 |-  ( ( ( F defAt A /\ _V = ( F ` A ) ) \/ ( -. F defAt A /\ _V = _V ) ) -> ( F ` A ) = (/) )
15 5 14 sylbi
 |-  ( if ( F defAt A , ( F ` A ) , _V ) = _V -> ( F ` A ) = (/) )
16 2 15 sylbi
 |-  ( ( F ''' A ) = _V -> ( F ` A ) = (/) )