Metamath Proof Explorer


Theorem afveu

Description: The value of a function at a unique point, analogous to fveu . (Contributed by Alexander van der Vekens, 29-Nov-2017)

Ref Expression
Assertion afveu ( ∃! 𝑥 𝐴 𝐹 𝑥 → ( 𝐹 ''' 𝐴 ) = { 𝑥𝐴 𝐹 𝑥 } )

Proof

Step Hyp Ref Expression
1 df-br ( 𝐴 𝐹 𝑥 ↔ ⟨ 𝐴 , 𝑥 ⟩ ∈ 𝐹 )
2 1 eubii ( ∃! 𝑥 𝐴 𝐹 𝑥 ↔ ∃! 𝑥𝐴 , 𝑥 ⟩ ∈ 𝐹 )
3 eu2ndop1stv ( ∃! 𝑥𝐴 , 𝑥 ⟩ ∈ 𝐹𝐴 ∈ V )
4 2 3 sylbi ( ∃! 𝑥 𝐴 𝐹 𝑥𝐴 ∈ V )
5 euex ( ∃! 𝑥 𝐴 𝐹 𝑥 → ∃ 𝑥 𝐴 𝐹 𝑥 )
6 eldmg ( 𝐴 ∈ V → ( 𝐴 ∈ dom 𝐹 ↔ ∃ 𝑥 𝐴 𝐹 𝑥 ) )
7 5 6 syl5ibrcom ( ∃! 𝑥 𝐴 𝐹 𝑥 → ( 𝐴 ∈ V → 𝐴 ∈ dom 𝐹 ) )
8 7 impcom ( ( 𝐴 ∈ V ∧ ∃! 𝑥 𝐴 𝐹 𝑥 ) → 𝐴 ∈ dom 𝐹 )
9 dfdfat2 ( 𝐹 defAt 𝐴 ↔ ( 𝐴 ∈ dom 𝐹 ∧ ∃! 𝑥 𝐴 𝐹 𝑥 ) )
10 afvfundmfveq ( 𝐹 defAt 𝐴 → ( 𝐹 ''' 𝐴 ) = ( 𝐹𝐴 ) )
11 fveu ( ∃! 𝑥 𝐴 𝐹 𝑥 → ( 𝐹𝐴 ) = { 𝑥𝐴 𝐹 𝑥 } )
12 10 11 sylan9eq ( ( 𝐹 defAt 𝐴 ∧ ∃! 𝑥 𝐴 𝐹 𝑥 ) → ( 𝐹 ''' 𝐴 ) = { 𝑥𝐴 𝐹 𝑥 } )
13 12 ex ( 𝐹 defAt 𝐴 → ( ∃! 𝑥 𝐴 𝐹 𝑥 → ( 𝐹 ''' 𝐴 ) = { 𝑥𝐴 𝐹 𝑥 } ) )
14 9 13 sylbir ( ( 𝐴 ∈ dom 𝐹 ∧ ∃! 𝑥 𝐴 𝐹 𝑥 ) → ( ∃! 𝑥 𝐴 𝐹 𝑥 → ( 𝐹 ''' 𝐴 ) = { 𝑥𝐴 𝐹 𝑥 } ) )
15 14 expcom ( ∃! 𝑥 𝐴 𝐹 𝑥 → ( 𝐴 ∈ dom 𝐹 → ( ∃! 𝑥 𝐴 𝐹 𝑥 → ( 𝐹 ''' 𝐴 ) = { 𝑥𝐴 𝐹 𝑥 } ) ) )
16 15 pm2.43a ( ∃! 𝑥 𝐴 𝐹 𝑥 → ( 𝐴 ∈ dom 𝐹 → ( 𝐹 ''' 𝐴 ) = { 𝑥𝐴 𝐹 𝑥 } ) )
17 16 adantl ( ( 𝐴 ∈ V ∧ ∃! 𝑥 𝐴 𝐹 𝑥 ) → ( 𝐴 ∈ dom 𝐹 → ( 𝐹 ''' 𝐴 ) = { 𝑥𝐴 𝐹 𝑥 } ) )
18 8 17 mpd ( ( 𝐴 ∈ V ∧ ∃! 𝑥 𝐴 𝐹 𝑥 ) → ( 𝐹 ''' 𝐴 ) = { 𝑥𝐴 𝐹 𝑥 } )
19 4 18 mpancom ( ∃! 𝑥 𝐴 𝐹 𝑥 → ( 𝐹 ''' 𝐴 ) = { 𝑥𝐴 𝐹 𝑥 } )