Step |
Hyp |
Ref |
Expression |
1 |
|
df-br |
⊢ ( 𝐴 𝐹 𝑥 ↔ 〈 𝐴 , 𝑥 〉 ∈ 𝐹 ) |
2 |
1
|
eubii |
⊢ ( ∃! 𝑥 𝐴 𝐹 𝑥 ↔ ∃! 𝑥 〈 𝐴 , 𝑥 〉 ∈ 𝐹 ) |
3 |
|
eu2ndop1stv |
⊢ ( ∃! 𝑥 〈 𝐴 , 𝑥 〉 ∈ 𝐹 → 𝐴 ∈ V ) |
4 |
2 3
|
sylbi |
⊢ ( ∃! 𝑥 𝐴 𝐹 𝑥 → 𝐴 ∈ V ) |
5 |
|
euex |
⊢ ( ∃! 𝑥 𝐴 𝐹 𝑥 → ∃ 𝑥 𝐴 𝐹 𝑥 ) |
6 |
|
eldmg |
⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ dom 𝐹 ↔ ∃ 𝑥 𝐴 𝐹 𝑥 ) ) |
7 |
5 6
|
syl5ibrcom |
⊢ ( ∃! 𝑥 𝐴 𝐹 𝑥 → ( 𝐴 ∈ V → 𝐴 ∈ dom 𝐹 ) ) |
8 |
7
|
impcom |
⊢ ( ( 𝐴 ∈ V ∧ ∃! 𝑥 𝐴 𝐹 𝑥 ) → 𝐴 ∈ dom 𝐹 ) |
9 |
|
dfdfat2 |
⊢ ( 𝐹 defAt 𝐴 ↔ ( 𝐴 ∈ dom 𝐹 ∧ ∃! 𝑥 𝐴 𝐹 𝑥 ) ) |
10 |
|
afvfundmfveq |
⊢ ( 𝐹 defAt 𝐴 → ( 𝐹 ''' 𝐴 ) = ( 𝐹 ‘ 𝐴 ) ) |
11 |
|
fveu |
⊢ ( ∃! 𝑥 𝐴 𝐹 𝑥 → ( 𝐹 ‘ 𝐴 ) = ∪ { 𝑥 ∣ 𝐴 𝐹 𝑥 } ) |
12 |
10 11
|
sylan9eq |
⊢ ( ( 𝐹 defAt 𝐴 ∧ ∃! 𝑥 𝐴 𝐹 𝑥 ) → ( 𝐹 ''' 𝐴 ) = ∪ { 𝑥 ∣ 𝐴 𝐹 𝑥 } ) |
13 |
12
|
ex |
⊢ ( 𝐹 defAt 𝐴 → ( ∃! 𝑥 𝐴 𝐹 𝑥 → ( 𝐹 ''' 𝐴 ) = ∪ { 𝑥 ∣ 𝐴 𝐹 𝑥 } ) ) |
14 |
9 13
|
sylbir |
⊢ ( ( 𝐴 ∈ dom 𝐹 ∧ ∃! 𝑥 𝐴 𝐹 𝑥 ) → ( ∃! 𝑥 𝐴 𝐹 𝑥 → ( 𝐹 ''' 𝐴 ) = ∪ { 𝑥 ∣ 𝐴 𝐹 𝑥 } ) ) |
15 |
14
|
expcom |
⊢ ( ∃! 𝑥 𝐴 𝐹 𝑥 → ( 𝐴 ∈ dom 𝐹 → ( ∃! 𝑥 𝐴 𝐹 𝑥 → ( 𝐹 ''' 𝐴 ) = ∪ { 𝑥 ∣ 𝐴 𝐹 𝑥 } ) ) ) |
16 |
15
|
pm2.43a |
⊢ ( ∃! 𝑥 𝐴 𝐹 𝑥 → ( 𝐴 ∈ dom 𝐹 → ( 𝐹 ''' 𝐴 ) = ∪ { 𝑥 ∣ 𝐴 𝐹 𝑥 } ) ) |
17 |
16
|
adantl |
⊢ ( ( 𝐴 ∈ V ∧ ∃! 𝑥 𝐴 𝐹 𝑥 ) → ( 𝐴 ∈ dom 𝐹 → ( 𝐹 ''' 𝐴 ) = ∪ { 𝑥 ∣ 𝐴 𝐹 𝑥 } ) ) |
18 |
8 17
|
mpd |
⊢ ( ( 𝐴 ∈ V ∧ ∃! 𝑥 𝐴 𝐹 𝑥 ) → ( 𝐹 ''' 𝐴 ) = ∪ { 𝑥 ∣ 𝐴 𝐹 𝑥 } ) |
19 |
4 18
|
mpancom |
⊢ ( ∃! 𝑥 𝐴 𝐹 𝑥 → ( 𝐹 ''' 𝐴 ) = ∪ { 𝑥 ∣ 𝐴 𝐹 𝑥 } ) |