Step |
Hyp |
Ref |
Expression |
1 |
|
df-br |
|- ( A F x <-> <. A , x >. e. F ) |
2 |
1
|
eubii |
|- ( E! x A F x <-> E! x <. A , x >. e. F ) |
3 |
|
eu2ndop1stv |
|- ( E! x <. A , x >. e. F -> A e. _V ) |
4 |
2 3
|
sylbi |
|- ( E! x A F x -> A e. _V ) |
5 |
|
euex |
|- ( E! x A F x -> E. x A F x ) |
6 |
|
eldmg |
|- ( A e. _V -> ( A e. dom F <-> E. x A F x ) ) |
7 |
5 6
|
syl5ibrcom |
|- ( E! x A F x -> ( A e. _V -> A e. dom F ) ) |
8 |
7
|
impcom |
|- ( ( A e. _V /\ E! x A F x ) -> A e. dom F ) |
9 |
|
dfdfat2 |
|- ( F defAt A <-> ( A e. dom F /\ E! x A F x ) ) |
10 |
|
afvfundmfveq |
|- ( F defAt A -> ( F ''' A ) = ( F ` A ) ) |
11 |
|
fveu |
|- ( E! x A F x -> ( F ` A ) = U. { x | A F x } ) |
12 |
10 11
|
sylan9eq |
|- ( ( F defAt A /\ E! x A F x ) -> ( F ''' A ) = U. { x | A F x } ) |
13 |
12
|
ex |
|- ( F defAt A -> ( E! x A F x -> ( F ''' A ) = U. { x | A F x } ) ) |
14 |
9 13
|
sylbir |
|- ( ( A e. dom F /\ E! x A F x ) -> ( E! x A F x -> ( F ''' A ) = U. { x | A F x } ) ) |
15 |
14
|
expcom |
|- ( E! x A F x -> ( A e. dom F -> ( E! x A F x -> ( F ''' A ) = U. { x | A F x } ) ) ) |
16 |
15
|
pm2.43a |
|- ( E! x A F x -> ( A e. dom F -> ( F ''' A ) = U. { x | A F x } ) ) |
17 |
16
|
adantl |
|- ( ( A e. _V /\ E! x A F x ) -> ( A e. dom F -> ( F ''' A ) = U. { x | A F x } ) ) |
18 |
8 17
|
mpd |
|- ( ( A e. _V /\ E! x A F x ) -> ( F ''' A ) = U. { x | A F x } ) |
19 |
4 18
|
mpancom |
|- ( E! x A F x -> ( F ''' A ) = U. { x | A F x } ) |