Metamath Proof Explorer


Theorem afveu

Description: The value of a function at a unique point, analogous to fveu . (Contributed by Alexander van der Vekens, 29-Nov-2017)

Ref Expression
Assertion afveu
|- ( E! x A F x -> ( F ''' A ) = U. { x | A F x } )

Proof

Step Hyp Ref Expression
1 df-br
 |-  ( A F x <-> <. A , x >. e. F )
2 1 eubii
 |-  ( E! x A F x <-> E! x <. A , x >. e. F )
3 eu2ndop1stv
 |-  ( E! x <. A , x >. e. F -> A e. _V )
4 2 3 sylbi
 |-  ( E! x A F x -> A e. _V )
5 euex
 |-  ( E! x A F x -> E. x A F x )
6 eldmg
 |-  ( A e. _V -> ( A e. dom F <-> E. x A F x ) )
7 5 6 syl5ibrcom
 |-  ( E! x A F x -> ( A e. _V -> A e. dom F ) )
8 7 impcom
 |-  ( ( A e. _V /\ E! x A F x ) -> A e. dom F )
9 dfdfat2
 |-  ( F defAt A <-> ( A e. dom F /\ E! x A F x ) )
10 afvfundmfveq
 |-  ( F defAt A -> ( F ''' A ) = ( F ` A ) )
11 fveu
 |-  ( E! x A F x -> ( F ` A ) = U. { x | A F x } )
12 10 11 sylan9eq
 |-  ( ( F defAt A /\ E! x A F x ) -> ( F ''' A ) = U. { x | A F x } )
13 12 ex
 |-  ( F defAt A -> ( E! x A F x -> ( F ''' A ) = U. { x | A F x } ) )
14 9 13 sylbir
 |-  ( ( A e. dom F /\ E! x A F x ) -> ( E! x A F x -> ( F ''' A ) = U. { x | A F x } ) )
15 14 expcom
 |-  ( E! x A F x -> ( A e. dom F -> ( E! x A F x -> ( F ''' A ) = U. { x | A F x } ) ) )
16 15 pm2.43a
 |-  ( E! x A F x -> ( A e. dom F -> ( F ''' A ) = U. { x | A F x } ) )
17 16 adantl
 |-  ( ( A e. _V /\ E! x A F x ) -> ( A e. dom F -> ( F ''' A ) = U. { x | A F x } ) )
18 8 17 mpd
 |-  ( ( A e. _V /\ E! x A F x ) -> ( F ''' A ) = U. { x | A F x } )
19 4 18 mpancom
 |-  ( E! x A F x -> ( F ''' A ) = U. { x | A F x } )