Metamath Proof Explorer


Theorem afveu

Description: The value of a function at a unique point, analogous to fveu . (Contributed by Alexander van der Vekens, 29-Nov-2017)

Ref Expression
Assertion afveu ∃! x A F x F ''' A = x | A F x

Proof

Step Hyp Ref Expression
1 df-br A F x A x F
2 1 eubii ∃! x A F x ∃! x A x F
3 eu2ndop1stv ∃! x A x F A V
4 2 3 sylbi ∃! x A F x A V
5 euex ∃! x A F x x A F x
6 eldmg A V A dom F x A F x
7 5 6 syl5ibrcom ∃! x A F x A V A dom F
8 7 impcom A V ∃! x A F x A dom F
9 dfdfat2 F defAt A A dom F ∃! x A F x
10 afvfundmfveq F defAt A F ''' A = F A
11 fveu ∃! x A F x F A = x | A F x
12 10 11 sylan9eq F defAt A ∃! x A F x F ''' A = x | A F x
13 12 ex F defAt A ∃! x A F x F ''' A = x | A F x
14 9 13 sylbir A dom F ∃! x A F x ∃! x A F x F ''' A = x | A F x
15 14 expcom ∃! x A F x A dom F ∃! x A F x F ''' A = x | A F x
16 15 pm2.43a ∃! x A F x A dom F F ''' A = x | A F x
17 16 adantl A V ∃! x A F x A dom F F ''' A = x | A F x
18 8 17 mpd A V ∃! x A F x F ''' A = x | A F x
19 4 18 mpancom ∃! x A F x F ''' A = x | A F x