Metamath Proof Explorer


Theorem afvfvn0fveq

Description: If the function's value at an argument is not the empty set, it equals the value of the alternative function at this argument. (Contributed by Alexander van der Vekens, 25-May-2017)

Ref Expression
Assertion afvfvn0fveq
|- ( ( F ` A ) =/= (/) -> ( F ''' A ) = ( F ` A ) )

Proof

Step Hyp Ref Expression
1 fvfundmfvn0
 |-  ( ( F ` A ) =/= (/) -> ( A e. dom F /\ Fun ( F |` { A } ) ) )
2 df-dfat
 |-  ( F defAt A <-> ( A e. dom F /\ Fun ( F |` { A } ) ) )
3 1 2 sylibr
 |-  ( ( F ` A ) =/= (/) -> F defAt A )
4 afvfundmfveq
 |-  ( F defAt A -> ( F ''' A ) = ( F ` A ) )
5 3 4 syl
 |-  ( ( F ` A ) =/= (/) -> ( F ''' A ) = ( F ` A ) )