Metamath Proof Explorer


Theorem aovvoveq

Description: The alternative value of the operation on an ordered pair equals the operation's value on this ordered pair. (Contributed by Alexander van der Vekens, 26-May-2017)

Ref Expression
Assertion aovvoveq ( (( 𝐴 𝐹 𝐵 )) ∈ 𝐶 → (( 𝐴 𝐹 𝐵 )) = ( 𝐴 𝐹 𝐵 ) )

Proof

Step Hyp Ref Expression
1 df-aov (( 𝐴 𝐹 𝐵 )) = ( 𝐹 ''' ⟨ 𝐴 , 𝐵 ⟩ )
2 1 eleq1i ( (( 𝐴 𝐹 𝐵 )) ∈ 𝐶 ↔ ( 𝐹 ''' ⟨ 𝐴 , 𝐵 ⟩ ) ∈ 𝐶 )
3 afvvfveq ( ( 𝐹 ''' ⟨ 𝐴 , 𝐵 ⟩ ) ∈ 𝐶 → ( 𝐹 ''' ⟨ 𝐴 , 𝐵 ⟩ ) = ( 𝐹 ‘ ⟨ 𝐴 , 𝐵 ⟩ ) )
4 df-ov ( 𝐴 𝐹 𝐵 ) = ( 𝐹 ‘ ⟨ 𝐴 , 𝐵 ⟩ )
5 3 1 4 3eqtr4g ( ( 𝐹 ''' ⟨ 𝐴 , 𝐵 ⟩ ) ∈ 𝐶 → (( 𝐴 𝐹 𝐵 )) = ( 𝐴 𝐹 𝐵 ) )
6 2 5 sylbi ( (( 𝐴 𝐹 𝐵 )) ∈ 𝐶 → (( 𝐴 𝐹 𝐵 )) = ( 𝐴 𝐹 𝐵 ) )