Description: Right-associative property of an associative algebra, deduction version. (Contributed by Thierry Arnoux, 15-Feb-2026)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | assaassd.1 | |- V = ( Base ` W ) |
|
| assaassd.2 | |- F = ( Scalar ` W ) |
||
| assaassd.3 | |- B = ( Base ` F ) |
||
| assaassd.4 | |- .x. = ( .s ` W ) |
||
| assaassd.5 | |- .X. = ( .r ` W ) |
||
| assaassd.6 | |- ( ph -> W e. AssAlg ) |
||
| assaassd.7 | |- ( ph -> A e. B ) |
||
| assaassd.8 | |- ( ph -> X e. V ) |
||
| assaassd.9 | |- ( ph -> Y e. V ) |
||
| Assertion | assaassrd | |- ( ph -> ( X .X. ( A .x. Y ) ) = ( A .x. ( X .X. Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | assaassd.1 | |- V = ( Base ` W ) |
|
| 2 | assaassd.2 | |- F = ( Scalar ` W ) |
|
| 3 | assaassd.3 | |- B = ( Base ` F ) |
|
| 4 | assaassd.4 | |- .x. = ( .s ` W ) |
|
| 5 | assaassd.5 | |- .X. = ( .r ` W ) |
|
| 6 | assaassd.6 | |- ( ph -> W e. AssAlg ) |
|
| 7 | assaassd.7 | |- ( ph -> A e. B ) |
|
| 8 | assaassd.8 | |- ( ph -> X e. V ) |
|
| 9 | assaassd.9 | |- ( ph -> Y e. V ) |
|
| 10 | 1 2 3 4 5 | assaassr | |- ( ( W e. AssAlg /\ ( A e. B /\ X e. V /\ Y e. V ) ) -> ( X .X. ( A .x. Y ) ) = ( A .x. ( X .X. Y ) ) ) |
| 11 | 6 7 8 9 10 | syl13anc | |- ( ph -> ( X .X. ( A .x. Y ) ) = ( A .x. ( X .X. Y ) ) ) |