Metamath Proof Explorer


Theorem assaassrd

Description: Right-associative property of an associative algebra, deduction version. (Contributed by Thierry Arnoux, 15-Feb-2026)

Ref Expression
Hypotheses assaassd.1 V = Base W
assaassd.2 F = Scalar W
assaassd.3 B = Base F
assaassd.4 · ˙ = W
assaassd.5 × ˙ = W
assaassd.6 φ W AssAlg
assaassd.7 φ A B
assaassd.8 φ X V
assaassd.9 φ Y V
Assertion assaassrd φ X × ˙ A · ˙ Y = A · ˙ X × ˙ Y

Proof

Step Hyp Ref Expression
1 assaassd.1 V = Base W
2 assaassd.2 F = Scalar W
3 assaassd.3 B = Base F
4 assaassd.4 · ˙ = W
5 assaassd.5 × ˙ = W
6 assaassd.6 φ W AssAlg
7 assaassd.7 φ A B
8 assaassd.8 φ X V
9 assaassd.9 φ Y V
10 1 2 3 4 5 assaassr W AssAlg A B X V Y V X × ˙ A · ˙ Y = A · ˙ X × ˙ Y
11 6 7 8 9 10 syl13anc φ X × ˙ A · ˙ Y = A · ˙ X × ˙ Y