Metamath Proof Explorer
Description: Right-associative property of an associative algebra, deduction version.
(Contributed by Thierry Arnoux, 15-Feb-2026)
|
|
Ref |
Expression |
|
Hypotheses |
assaassd.1 |
|
|
|
assaassd.2 |
|
|
|
assaassd.3 |
|
|
|
assaassd.4 |
|
|
|
assaassd.5 |
|
|
|
assaassd.6 |
|
|
|
assaassd.7 |
|
|
|
assaassd.8 |
|
|
|
assaassd.9 |
|
|
Assertion |
assaassrd |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
assaassd.1 |
|
| 2 |
|
assaassd.2 |
|
| 3 |
|
assaassd.3 |
|
| 4 |
|
assaassd.4 |
|
| 5 |
|
assaassd.5 |
|
| 6 |
|
assaassd.6 |
|
| 7 |
|
assaassd.7 |
|
| 8 |
|
assaassd.8 |
|
| 9 |
|
assaassd.9 |
|
| 10 |
1 2 3 4 5
|
assaassr |
|
| 11 |
6 7 8 9 10
|
syl13anc |
|