Metamath Proof Explorer


Theorem axc15

Description: Derivation of set.mm's original ax-c15 from ax-c11n and the shorter ax-12 that has replaced it.

Theorem ax12 shows the reverse derivation of ax-12 from ax-c15 .

Normally, axc15 should be used rather than ax-c15 , except by theorems specifically studying the latter's properties. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 2-Feb-2007) (Proof shortened by Wolf Lammen, 26-Mar-2023) (New usage is discouraged.)

Ref Expression
Assertion axc15
|- ( -. A. x x = y -> ( x = y -> ( ph -> A. x ( x = y -> ph ) ) ) )

Proof

Step Hyp Ref Expression
1 ax6ev
 |-  E. z z = y
2 dveeq2
 |-  ( -. A. x x = y -> ( z = y -> A. x z = y ) )
3 ax12v
 |-  ( x = z -> ( ph -> A. x ( x = z -> ph ) ) )
4 equeuclr
 |-  ( z = y -> ( x = y -> x = z ) )
5 4 sps
 |-  ( A. x z = y -> ( x = y -> x = z ) )
6 4 imim1d
 |-  ( z = y -> ( ( x = z -> ph ) -> ( x = y -> ph ) ) )
7 6 al2imi
 |-  ( A. x z = y -> ( A. x ( x = z -> ph ) -> A. x ( x = y -> ph ) ) )
8 7 imim2d
 |-  ( A. x z = y -> ( ( ph -> A. x ( x = z -> ph ) ) -> ( ph -> A. x ( x = y -> ph ) ) ) )
9 5 8 imim12d
 |-  ( A. x z = y -> ( ( x = z -> ( ph -> A. x ( x = z -> ph ) ) ) -> ( x = y -> ( ph -> A. x ( x = y -> ph ) ) ) ) )
10 2 3 9 syl6mpi
 |-  ( -. A. x x = y -> ( z = y -> ( x = y -> ( ph -> A. x ( x = y -> ph ) ) ) ) )
11 10 exlimdv
 |-  ( -. A. x x = y -> ( E. z z = y -> ( x = y -> ( ph -> A. x ( x = y -> ph ) ) ) ) )
12 1 11 mpi
 |-  ( -. A. x x = y -> ( x = y -> ( ph -> A. x ( x = y -> ph ) ) ) )