Description: Derive Axiom ax-hilex from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | axhil.1 | |- U = <. <. +h , .h >. , normh >. |
|
| axhil.2 | |- U e. CHilOLD |
||
| Assertion | axhilex-zf | |- ~H e. _V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axhil.1 | |- U = <. <. +h , .h >. , normh >. |
|
| 2 | axhil.2 | |- U e. CHilOLD |
|
| 3 | df-hba | |- ~H = ( BaseSet ` <. <. +h , .h >. , normh >. ) |
|
| 4 | 3 | hlex | |- ~H e. _V |