Description: Derive Axiom ax-hilex from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | axhil.1 | |- U = <. <. +h , .h >. , normh >. |
|
axhil.2 | |- U e. CHilOLD |
||
Assertion | axhilex-zf | |- ~H e. _V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axhil.1 | |- U = <. <. +h , .h >. , normh >. |
|
2 | axhil.2 | |- U e. CHilOLD |
|
3 | df-hba | |- ~H = ( BaseSet ` <. <. +h , .h >. , normh >. ) |
|
4 | 3 | hlex | |- ~H e. _V |