Description: Derive Axiom ax-hfvadd from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | axhil.1 | |- U = <. <. +h , .h >. , normh >. | |
| axhil.2 | |- U e. CHilOLD | ||
| Assertion | axhfvadd-zf | |- +h : ( ~H X. ~H ) --> ~H | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | axhil.1 | |- U = <. <. +h , .h >. , normh >. | |
| 2 | axhil.2 | |- U e. CHilOLD | |
| 3 | df-hba | |- ~H = ( BaseSet ` <. <. +h , .h >. , normh >. ) | |
| 4 | 1 | fveq2i | |- ( BaseSet ` U ) = ( BaseSet ` <. <. +h , .h >. , normh >. ) | 
| 5 | 3 4 | eqtr4i | |- ~H = ( BaseSet ` U ) | 
| 6 | 2 | hlnvi | |- U e. NrmCVec | 
| 7 | 1 6 | h2hva | |- +h = ( +v ` U ) | 
| 8 | 5 7 | hladdf | |- ( U e. CHilOLD -> +h : ( ~H X. ~H ) --> ~H ) | 
| 9 | 2 8 | ax-mp | |- +h : ( ~H X. ~H ) --> ~H |