Description: Derive Axiom ax-hilex from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | axhil.1 | ⊢ 𝑈 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 | |
axhil.2 | ⊢ 𝑈 ∈ CHilOLD | ||
Assertion | axhilex-zf | ⊢ ℋ ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axhil.1 | ⊢ 𝑈 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 | |
2 | axhil.2 | ⊢ 𝑈 ∈ CHilOLD | |
3 | df-hba | ⊢ ℋ = ( BaseSet ‘ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ) | |
4 | 3 | hlex | ⊢ ℋ ∈ V |