Description: Derive Axiom ax-his1 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | axhil.1 | |- U = <. <. +h , .h >. , normh >. | |
| axhil.2 | |- U e. CHilOLD | ||
| axhfi.1 | |- .ih = ( .iOLD ` U ) | ||
| Assertion | axhis1-zf | |- ( ( A e. ~H /\ B e. ~H ) -> ( A .ih B ) = ( * ` ( B .ih A ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | axhil.1 | |- U = <. <. +h , .h >. , normh >. | |
| 2 | axhil.2 | |- U e. CHilOLD | |
| 3 | axhfi.1 | |- .ih = ( .iOLD ` U ) | |
| 4 | df-hba | |- ~H = ( BaseSet ` <. <. +h , .h >. , normh >. ) | |
| 5 | 1 | fveq2i | |- ( BaseSet ` U ) = ( BaseSet ` <. <. +h , .h >. , normh >. ) | 
| 6 | 4 5 | eqtr4i | |- ~H = ( BaseSet ` U ) | 
| 7 | 6 3 | hlipcj | |- ( ( U e. CHilOLD /\ A e. ~H /\ B e. ~H ) -> ( A .ih B ) = ( * ` ( B .ih A ) ) ) | 
| 8 | 2 7 | mp3an1 | |- ( ( A e. ~H /\ B e. ~H ) -> ( A .ih B ) = ( * ` ( B .ih A ) ) ) |