| Step | Hyp | Ref | Expression | 
						
							| 1 |  | axhil.1 |  |-  U = <. <. +h , .h >. , normh >. | 
						
							| 2 |  | axhil.2 |  |-  U e. CHilOLD | 
						
							| 3 |  | df-hba |  |-  ~H = ( BaseSet ` <. <. +h , .h >. , normh >. ) | 
						
							| 4 | 1 | fveq2i |  |-  ( BaseSet ` U ) = ( BaseSet ` <. <. +h , .h >. , normh >. ) | 
						
							| 5 | 3 4 | eqtr4i |  |-  ~H = ( BaseSet ` U ) | 
						
							| 6 | 2 | hlnvi |  |-  U e. NrmCVec | 
						
							| 7 | 1 6 | h2hsm |  |-  .h = ( .sOLD ` U ) | 
						
							| 8 |  | df-h0v |  |-  0h = ( 0vec ` <. <. +h , .h >. , normh >. ) | 
						
							| 9 | 1 | fveq2i |  |-  ( 0vec ` U ) = ( 0vec ` <. <. +h , .h >. , normh >. ) | 
						
							| 10 | 8 9 | eqtr4i |  |-  0h = ( 0vec ` U ) | 
						
							| 11 | 5 7 10 | hlmul0 |  |-  ( ( U e. CHilOLD /\ A e. ~H ) -> ( 0 .h A ) = 0h ) | 
						
							| 12 | 2 11 | mpan |  |-  ( A e. ~H -> ( 0 .h A ) = 0h ) |