| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ballotth.m |  |-  M e. NN | 
						
							| 2 |  | ballotth.n |  |-  N e. NN | 
						
							| 3 |  | ballotth.o |  |-  O = { c e. ~P ( 1 ... ( M + N ) ) | ( # ` c ) = M } | 
						
							| 4 |  | ballotth.p |  |-  P = ( x e. ~P O |-> ( ( # ` x ) / ( # ` O ) ) ) | 
						
							| 5 |  | ballotth.f |  |-  F = ( c e. O |-> ( i e. ZZ |-> ( ( # ` ( ( 1 ... i ) i^i c ) ) - ( # ` ( ( 1 ... i ) \ c ) ) ) ) ) | 
						
							| 6 |  | ballotth.e |  |-  E = { c e. O | A. i e. ( 1 ... ( M + N ) ) 0 < ( ( F ` c ) ` i ) } | 
						
							| 7 |  | ballotth.mgtn |  |-  N < M | 
						
							| 8 |  | ballotth.i |  |-  I = ( c e. ( O \ E ) |-> inf ( { k e. ( 1 ... ( M + N ) ) | ( ( F ` c ) ` k ) = 0 } , RR , < ) ) | 
						
							| 9 |  | ballotth.s |  |-  S = ( c e. ( O \ E ) |-> ( i e. ( 1 ... ( M + N ) ) |-> if ( i <_ ( I ` c ) , ( ( ( I ` c ) + 1 ) - i ) , i ) ) ) | 
						
							| 10 |  | ballotth.r |  |-  R = ( c e. ( O \ E ) |-> ( ( S ` c ) " c ) ) | 
						
							| 11 | 1 2 3 4 5 6 7 8 9 10 | ballotlemrinv0 |  |-  ( ( c e. ( O \ E ) /\ d = ( ( S ` c ) " c ) ) -> ( d e. ( O \ E ) /\ c = ( ( S ` d ) " d ) ) ) | 
						
							| 12 | 1 2 3 4 5 6 7 8 9 10 | ballotlemrinv0 |  |-  ( ( d e. ( O \ E ) /\ c = ( ( S ` d ) " d ) ) -> ( c e. ( O \ E ) /\ d = ( ( S ` c ) " c ) ) ) | 
						
							| 13 | 11 12 | impbii |  |-  ( ( c e. ( O \ E ) /\ d = ( ( S ` c ) " c ) ) <-> ( d e. ( O \ E ) /\ c = ( ( S ` d ) " d ) ) ) | 
						
							| 14 | 13 | a1i |  |-  ( T. -> ( ( c e. ( O \ E ) /\ d = ( ( S ` c ) " c ) ) <-> ( d e. ( O \ E ) /\ c = ( ( S ` d ) " d ) ) ) ) | 
						
							| 15 | 14 | mptcnv |  |-  ( T. -> `' ( c e. ( O \ E ) |-> ( ( S ` c ) " c ) ) = ( d e. ( O \ E ) |-> ( ( S ` d ) " d ) ) ) | 
						
							| 16 | 15 | mptru |  |-  `' ( c e. ( O \ E ) |-> ( ( S ` c ) " c ) ) = ( d e. ( O \ E ) |-> ( ( S ` d ) " d ) ) | 
						
							| 17 |  | fveq2 |  |-  ( d = c -> ( S ` d ) = ( S ` c ) ) | 
						
							| 18 |  | id |  |-  ( d = c -> d = c ) | 
						
							| 19 | 17 18 | imaeq12d |  |-  ( d = c -> ( ( S ` d ) " d ) = ( ( S ` c ) " c ) ) | 
						
							| 20 | 19 | cbvmptv |  |-  ( d e. ( O \ E ) |-> ( ( S ` d ) " d ) ) = ( c e. ( O \ E ) |-> ( ( S ` c ) " c ) ) | 
						
							| 21 | 16 20 | eqtri |  |-  `' ( c e. ( O \ E ) |-> ( ( S ` c ) " c ) ) = ( c e. ( O \ E ) |-> ( ( S ` c ) " c ) ) | 
						
							| 22 | 10 | cnveqi |  |-  `' R = `' ( c e. ( O \ E ) |-> ( ( S ` c ) " c ) ) | 
						
							| 23 | 21 22 10 | 3eqtr4i |  |-  `' R = R |