| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ballotth.m |  |-  M e. NN | 
						
							| 2 |  | ballotth.n |  |-  N e. NN | 
						
							| 3 |  | ballotth.o |  |-  O = { c e. ~P ( 1 ... ( M + N ) ) | ( # ` c ) = M } | 
						
							| 4 |  | ballotth.p |  |-  P = ( x e. ~P O |-> ( ( # ` x ) / ( # ` O ) ) ) | 
						
							| 5 |  | ballotth.f |  |-  F = ( c e. O |-> ( i e. ZZ |-> ( ( # ` ( ( 1 ... i ) i^i c ) ) - ( # ` ( ( 1 ... i ) \ c ) ) ) ) ) | 
						
							| 6 |  | ballotth.e |  |-  E = { c e. O | A. i e. ( 1 ... ( M + N ) ) 0 < ( ( F ` c ) ` i ) } | 
						
							| 7 |  | ballotth.mgtn |  |-  N < M | 
						
							| 8 |  | ballotth.i |  |-  I = ( c e. ( O \ E ) |-> inf ( { k e. ( 1 ... ( M + N ) ) | ( ( F ` c ) ` k ) = 0 } , RR , < ) ) | 
						
							| 9 |  | ballotth.s |  |-  S = ( c e. ( O \ E ) |-> ( i e. ( 1 ... ( M + N ) ) |-> if ( i <_ ( I ` c ) , ( ( ( I ` c ) + 1 ) - i ) , i ) ) ) | 
						
							| 10 |  | ballotth.r |  |-  R = ( c e. ( O \ E ) |-> ( ( S ` c ) " c ) ) | 
						
							| 11 |  | nnaddcl |  |-  ( ( M e. NN /\ N e. NN ) -> ( M + N ) e. NN ) | 
						
							| 12 | 1 2 11 | mp2an |  |-  ( M + N ) e. NN | 
						
							| 13 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 14 | 12 13 | eleqtri |  |-  ( M + N ) e. ( ZZ>= ` 1 ) | 
						
							| 15 |  | eluzfz1 |  |-  ( ( M + N ) e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... ( M + N ) ) ) | 
						
							| 16 | 14 15 | mp1i |  |-  ( C e. ( O \ E ) -> 1 e. ( 1 ... ( M + N ) ) ) | 
						
							| 17 | 1 2 3 4 5 6 7 8 | ballotlemiex |  |-  ( C e. ( O \ E ) -> ( ( I ` C ) e. ( 1 ... ( M + N ) ) /\ ( ( F ` C ) ` ( I ` C ) ) = 0 ) ) | 
						
							| 18 | 17 | simpld |  |-  ( C e. ( O \ E ) -> ( I ` C ) e. ( 1 ... ( M + N ) ) ) | 
						
							| 19 |  | elfzle1 |  |-  ( ( I ` C ) e. ( 1 ... ( M + N ) ) -> 1 <_ ( I ` C ) ) | 
						
							| 20 | 18 19 | syl |  |-  ( C e. ( O \ E ) -> 1 <_ ( I ` C ) ) | 
						
							| 21 | 1 2 3 4 5 6 7 8 9 10 | ballotlemrv1 |  |-  ( ( C e. ( O \ E ) /\ 1 e. ( 1 ... ( M + N ) ) /\ 1 <_ ( I ` C ) ) -> ( 1 e. ( R ` C ) <-> ( ( ( I ` C ) + 1 ) - 1 ) e. C ) ) | 
						
							| 22 | 16 20 21 | mpd3an23 |  |-  ( C e. ( O \ E ) -> ( 1 e. ( R ` C ) <-> ( ( ( I ` C ) + 1 ) - 1 ) e. C ) ) | 
						
							| 23 | 18 | elfzelzd |  |-  ( C e. ( O \ E ) -> ( I ` C ) e. ZZ ) | 
						
							| 24 | 23 | zcnd |  |-  ( C e. ( O \ E ) -> ( I ` C ) e. CC ) | 
						
							| 25 |  | 1cnd |  |-  ( C e. ( O \ E ) -> 1 e. CC ) | 
						
							| 26 | 24 25 | pncand |  |-  ( C e. ( O \ E ) -> ( ( ( I ` C ) + 1 ) - 1 ) = ( I ` C ) ) | 
						
							| 27 | 26 | eleq1d |  |-  ( C e. ( O \ E ) -> ( ( ( ( I ` C ) + 1 ) - 1 ) e. C <-> ( I ` C ) e. C ) ) | 
						
							| 28 | 22 27 | bitrd |  |-  ( C e. ( O \ E ) -> ( 1 e. ( R ` C ) <-> ( I ` C ) e. C ) ) |