| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ballotth.m |
|- M e. NN |
| 2 |
|
ballotth.n |
|- N e. NN |
| 3 |
|
ballotth.o |
|- O = { c e. ~P ( 1 ... ( M + N ) ) | ( # ` c ) = M } |
| 4 |
|
ballotth.p |
|- P = ( x e. ~P O |-> ( ( # ` x ) / ( # ` O ) ) ) |
| 5 |
|
ballotth.f |
|- F = ( c e. O |-> ( i e. ZZ |-> ( ( # ` ( ( 1 ... i ) i^i c ) ) - ( # ` ( ( 1 ... i ) \ c ) ) ) ) ) |
| 6 |
|
ballotth.e |
|- E = { c e. O | A. i e. ( 1 ... ( M + N ) ) 0 < ( ( F ` c ) ` i ) } |
| 7 |
|
ballotth.mgtn |
|- N < M |
| 8 |
|
ballotth.i |
|- I = ( c e. ( O \ E ) |-> inf ( { k e. ( 1 ... ( M + N ) ) | ( ( F ` c ) ` k ) = 0 } , RR , < ) ) |
| 9 |
1 2 3 4 5 6 7 8
|
ballotlemi |
|- ( C e. ( O \ E ) -> ( I ` C ) = inf ( { k e. ( 1 ... ( M + N ) ) | ( ( F ` C ) ` k ) = 0 } , RR , < ) ) |
| 10 |
|
ltso |
|- < Or RR |
| 11 |
10
|
a1i |
|- ( C e. ( O \ E ) -> < Or RR ) |
| 12 |
|
fzfi |
|- ( 1 ... ( M + N ) ) e. Fin |
| 13 |
|
ssrab2 |
|- { k e. ( 1 ... ( M + N ) ) | ( ( F ` C ) ` k ) = 0 } C_ ( 1 ... ( M + N ) ) |
| 14 |
|
ssfi |
|- ( ( ( 1 ... ( M + N ) ) e. Fin /\ { k e. ( 1 ... ( M + N ) ) | ( ( F ` C ) ` k ) = 0 } C_ ( 1 ... ( M + N ) ) ) -> { k e. ( 1 ... ( M + N ) ) | ( ( F ` C ) ` k ) = 0 } e. Fin ) |
| 15 |
12 13 14
|
mp2an |
|- { k e. ( 1 ... ( M + N ) ) | ( ( F ` C ) ` k ) = 0 } e. Fin |
| 16 |
15
|
a1i |
|- ( C e. ( O \ E ) -> { k e. ( 1 ... ( M + N ) ) | ( ( F ` C ) ` k ) = 0 } e. Fin ) |
| 17 |
1 2 3 4 5 6 7
|
ballotlem5 |
|- ( C e. ( O \ E ) -> E. k e. ( 1 ... ( M + N ) ) ( ( F ` C ) ` k ) = 0 ) |
| 18 |
|
rabn0 |
|- ( { k e. ( 1 ... ( M + N ) ) | ( ( F ` C ) ` k ) = 0 } =/= (/) <-> E. k e. ( 1 ... ( M + N ) ) ( ( F ` C ) ` k ) = 0 ) |
| 19 |
17 18
|
sylibr |
|- ( C e. ( O \ E ) -> { k e. ( 1 ... ( M + N ) ) | ( ( F ` C ) ` k ) = 0 } =/= (/) ) |
| 20 |
|
fzssuz |
|- ( 1 ... ( M + N ) ) C_ ( ZZ>= ` 1 ) |
| 21 |
|
uzssz |
|- ( ZZ>= ` 1 ) C_ ZZ |
| 22 |
20 21
|
sstri |
|- ( 1 ... ( M + N ) ) C_ ZZ |
| 23 |
|
zssre |
|- ZZ C_ RR |
| 24 |
22 23
|
sstri |
|- ( 1 ... ( M + N ) ) C_ RR |
| 25 |
13 24
|
sstri |
|- { k e. ( 1 ... ( M + N ) ) | ( ( F ` C ) ` k ) = 0 } C_ RR |
| 26 |
25
|
a1i |
|- ( C e. ( O \ E ) -> { k e. ( 1 ... ( M + N ) ) | ( ( F ` C ) ` k ) = 0 } C_ RR ) |
| 27 |
|
fiinfcl |
|- ( ( < Or RR /\ ( { k e. ( 1 ... ( M + N ) ) | ( ( F ` C ) ` k ) = 0 } e. Fin /\ { k e. ( 1 ... ( M + N ) ) | ( ( F ` C ) ` k ) = 0 } =/= (/) /\ { k e. ( 1 ... ( M + N ) ) | ( ( F ` C ) ` k ) = 0 } C_ RR ) ) -> inf ( { k e. ( 1 ... ( M + N ) ) | ( ( F ` C ) ` k ) = 0 } , RR , < ) e. { k e. ( 1 ... ( M + N ) ) | ( ( F ` C ) ` k ) = 0 } ) |
| 28 |
11 16 19 26 27
|
syl13anc |
|- ( C e. ( O \ E ) -> inf ( { k e. ( 1 ... ( M + N ) ) | ( ( F ` C ) ` k ) = 0 } , RR , < ) e. { k e. ( 1 ... ( M + N ) ) | ( ( F ` C ) ` k ) = 0 } ) |
| 29 |
9 28
|
eqeltrd |
|- ( C e. ( O \ E ) -> ( I ` C ) e. { k e. ( 1 ... ( M + N ) ) | ( ( F ` C ) ` k ) = 0 } ) |
| 30 |
|
fveqeq2 |
|- ( k = ( I ` C ) -> ( ( ( F ` C ) ` k ) = 0 <-> ( ( F ` C ) ` ( I ` C ) ) = 0 ) ) |
| 31 |
30
|
elrab |
|- ( ( I ` C ) e. { k e. ( 1 ... ( M + N ) ) | ( ( F ` C ) ` k ) = 0 } <-> ( ( I ` C ) e. ( 1 ... ( M + N ) ) /\ ( ( F ` C ) ` ( I ` C ) ) = 0 ) ) |
| 32 |
29 31
|
sylib |
|- ( C e. ( O \ E ) -> ( ( I ` C ) e. ( 1 ... ( M + N ) ) /\ ( ( F ` C ) ` ( I ` C ) ) = 0 ) ) |