| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ballotth.m |
|- M e. NN |
| 2 |
|
ballotth.n |
|- N e. NN |
| 3 |
|
ballotth.o |
|- O = { c e. ~P ( 1 ... ( M + N ) ) | ( # ` c ) = M } |
| 4 |
|
ballotth.p |
|- P = ( x e. ~P O |-> ( ( # ` x ) / ( # ` O ) ) ) |
| 5 |
|
ballotth.f |
|- F = ( c e. O |-> ( i e. ZZ |-> ( ( # ` ( ( 1 ... i ) i^i c ) ) - ( # ` ( ( 1 ... i ) \ c ) ) ) ) ) |
| 6 |
|
ballotth.e |
|- E = { c e. O | A. i e. ( 1 ... ( M + N ) ) 0 < ( ( F ` c ) ` i ) } |
| 7 |
|
ballotth.mgtn |
|- N < M |
| 8 |
|
ballotth.i |
|- I = ( c e. ( O \ E ) |-> inf ( { k e. ( 1 ... ( M + N ) ) | ( ( F ` c ) ` k ) = 0 } , RR , < ) ) |
| 9 |
|
0re |
|- 0 e. RR |
| 10 |
|
1re |
|- 1 e. RR |
| 11 |
9 10
|
resubcli |
|- ( 0 - 1 ) e. RR |
| 12 |
|
0lt1 |
|- 0 < 1 |
| 13 |
|
ltsub23 |
|- ( ( 0 e. RR /\ 1 e. RR /\ 0 e. RR ) -> ( ( 0 - 1 ) < 0 <-> ( 0 - 0 ) < 1 ) ) |
| 14 |
9 10 9 13
|
mp3an |
|- ( ( 0 - 1 ) < 0 <-> ( 0 - 0 ) < 1 ) |
| 15 |
|
0m0e0 |
|- ( 0 - 0 ) = 0 |
| 16 |
15
|
breq1i |
|- ( ( 0 - 0 ) < 1 <-> 0 < 1 ) |
| 17 |
14 16
|
bitr2i |
|- ( 0 < 1 <-> ( 0 - 1 ) < 0 ) |
| 18 |
12 17
|
mpbi |
|- ( 0 - 1 ) < 0 |
| 19 |
11 18
|
gtneii |
|- 0 =/= ( 0 - 1 ) |
| 20 |
19
|
nesymi |
|- -. ( 0 - 1 ) = 0 |
| 21 |
|
eldifi |
|- ( C e. ( O \ E ) -> C e. O ) |
| 22 |
|
1nn |
|- 1 e. NN |
| 23 |
22
|
a1i |
|- ( C e. ( O \ E ) -> 1 e. NN ) |
| 24 |
1 2 3 4 5 21 23
|
ballotlemfp1 |
|- ( C e. ( O \ E ) -> ( ( -. 1 e. C -> ( ( F ` C ) ` 1 ) = ( ( ( F ` C ) ` ( 1 - 1 ) ) - 1 ) ) /\ ( 1 e. C -> ( ( F ` C ) ` 1 ) = ( ( ( F ` C ) ` ( 1 - 1 ) ) + 1 ) ) ) ) |
| 25 |
24
|
simpld |
|- ( C e. ( O \ E ) -> ( -. 1 e. C -> ( ( F ` C ) ` 1 ) = ( ( ( F ` C ) ` ( 1 - 1 ) ) - 1 ) ) ) |
| 26 |
25
|
imp |
|- ( ( C e. ( O \ E ) /\ -. 1 e. C ) -> ( ( F ` C ) ` 1 ) = ( ( ( F ` C ) ` ( 1 - 1 ) ) - 1 ) ) |
| 27 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
| 28 |
27
|
fveq2i |
|- ( ( F ` C ) ` ( 1 - 1 ) ) = ( ( F ` C ) ` 0 ) |
| 29 |
28
|
oveq1i |
|- ( ( ( F ` C ) ` ( 1 - 1 ) ) - 1 ) = ( ( ( F ` C ) ` 0 ) - 1 ) |
| 30 |
29
|
a1i |
|- ( ( C e. ( O \ E ) /\ -. 1 e. C ) -> ( ( ( F ` C ) ` ( 1 - 1 ) ) - 1 ) = ( ( ( F ` C ) ` 0 ) - 1 ) ) |
| 31 |
1 2 3 4 5
|
ballotlemfval0 |
|- ( C e. O -> ( ( F ` C ) ` 0 ) = 0 ) |
| 32 |
21 31
|
syl |
|- ( C e. ( O \ E ) -> ( ( F ` C ) ` 0 ) = 0 ) |
| 33 |
32
|
adantr |
|- ( ( C e. ( O \ E ) /\ -. 1 e. C ) -> ( ( F ` C ) ` 0 ) = 0 ) |
| 34 |
33
|
oveq1d |
|- ( ( C e. ( O \ E ) /\ -. 1 e. C ) -> ( ( ( F ` C ) ` 0 ) - 1 ) = ( 0 - 1 ) ) |
| 35 |
26 30 34
|
3eqtrrd |
|- ( ( C e. ( O \ E ) /\ -. 1 e. C ) -> ( 0 - 1 ) = ( ( F ` C ) ` 1 ) ) |
| 36 |
35
|
eqeq1d |
|- ( ( C e. ( O \ E ) /\ -. 1 e. C ) -> ( ( 0 - 1 ) = 0 <-> ( ( F ` C ) ` 1 ) = 0 ) ) |
| 37 |
20 36
|
mtbii |
|- ( ( C e. ( O \ E ) /\ -. 1 e. C ) -> -. ( ( F ` C ) ` 1 ) = 0 ) |
| 38 |
1 2 3 4 5 6 7 8
|
ballotlemiex |
|- ( C e. ( O \ E ) -> ( ( I ` C ) e. ( 1 ... ( M + N ) ) /\ ( ( F ` C ) ` ( I ` C ) ) = 0 ) ) |
| 39 |
38
|
simprd |
|- ( C e. ( O \ E ) -> ( ( F ` C ) ` ( I ` C ) ) = 0 ) |
| 40 |
39
|
ad2antrr |
|- ( ( ( C e. ( O \ E ) /\ -. 1 e. C ) /\ ( I ` C ) = 1 ) -> ( ( F ` C ) ` ( I ` C ) ) = 0 ) |
| 41 |
|
fveqeq2 |
|- ( ( I ` C ) = 1 -> ( ( ( F ` C ) ` ( I ` C ) ) = 0 <-> ( ( F ` C ) ` 1 ) = 0 ) ) |
| 42 |
41
|
adantl |
|- ( ( ( C e. ( O \ E ) /\ -. 1 e. C ) /\ ( I ` C ) = 1 ) -> ( ( ( F ` C ) ` ( I ` C ) ) = 0 <-> ( ( F ` C ) ` 1 ) = 0 ) ) |
| 43 |
40 42
|
mpbid |
|- ( ( ( C e. ( O \ E ) /\ -. 1 e. C ) /\ ( I ` C ) = 1 ) -> ( ( F ` C ) ` 1 ) = 0 ) |
| 44 |
37 43
|
mtand |
|- ( ( C e. ( O \ E ) /\ -. 1 e. C ) -> -. ( I ` C ) = 1 ) |
| 45 |
44
|
neqned |
|- ( ( C e. ( O \ E ) /\ -. 1 e. C ) -> ( I ` C ) =/= 1 ) |