Step |
Hyp |
Ref |
Expression |
1 |
|
ballotth.m |
|- M e. NN |
2 |
|
ballotth.n |
|- N e. NN |
3 |
|
ballotth.o |
|- O = { c e. ~P ( 1 ... ( M + N ) ) | ( # ` c ) = M } |
4 |
|
ballotth.p |
|- P = ( x e. ~P O |-> ( ( # ` x ) / ( # ` O ) ) ) |
5 |
|
ballotth.f |
|- F = ( c e. O |-> ( i e. ZZ |-> ( ( # ` ( ( 1 ... i ) i^i c ) ) - ( # ` ( ( 1 ... i ) \ c ) ) ) ) ) |
6 |
|
ballotth.e |
|- E = { c e. O | A. i e. ( 1 ... ( M + N ) ) 0 < ( ( F ` c ) ` i ) } |
7 |
|
ballotth.mgtn |
|- N < M |
8 |
|
ballotth.i |
|- I = ( c e. ( O \ E ) |-> inf ( { k e. ( 1 ... ( M + N ) ) | ( ( F ` c ) ` k ) = 0 } , RR , < ) ) |
9 |
|
1e0p1 |
|- 1 = ( 0 + 1 ) |
10 |
|
ax-1ne0 |
|- 1 =/= 0 |
11 |
9 10
|
eqnetrri |
|- ( 0 + 1 ) =/= 0 |
12 |
11
|
neii |
|- -. ( 0 + 1 ) = 0 |
13 |
|
eldifi |
|- ( C e. ( O \ E ) -> C e. O ) |
14 |
|
1nn |
|- 1 e. NN |
15 |
14
|
a1i |
|- ( C e. ( O \ E ) -> 1 e. NN ) |
16 |
1 2 3 4 5 13 15
|
ballotlemfp1 |
|- ( C e. ( O \ E ) -> ( ( -. 1 e. C -> ( ( F ` C ) ` 1 ) = ( ( ( F ` C ) ` ( 1 - 1 ) ) - 1 ) ) /\ ( 1 e. C -> ( ( F ` C ) ` 1 ) = ( ( ( F ` C ) ` ( 1 - 1 ) ) + 1 ) ) ) ) |
17 |
16
|
simprd |
|- ( C e. ( O \ E ) -> ( 1 e. C -> ( ( F ` C ) ` 1 ) = ( ( ( F ` C ) ` ( 1 - 1 ) ) + 1 ) ) ) |
18 |
17
|
imp |
|- ( ( C e. ( O \ E ) /\ 1 e. C ) -> ( ( F ` C ) ` 1 ) = ( ( ( F ` C ) ` ( 1 - 1 ) ) + 1 ) ) |
19 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
20 |
19
|
fveq2i |
|- ( ( F ` C ) ` ( 1 - 1 ) ) = ( ( F ` C ) ` 0 ) |
21 |
20
|
oveq1i |
|- ( ( ( F ` C ) ` ( 1 - 1 ) ) + 1 ) = ( ( ( F ` C ) ` 0 ) + 1 ) |
22 |
21
|
a1i |
|- ( ( C e. ( O \ E ) /\ 1 e. C ) -> ( ( ( F ` C ) ` ( 1 - 1 ) ) + 1 ) = ( ( ( F ` C ) ` 0 ) + 1 ) ) |
23 |
1 2 3 4 5
|
ballotlemfval0 |
|- ( C e. O -> ( ( F ` C ) ` 0 ) = 0 ) |
24 |
13 23
|
syl |
|- ( C e. ( O \ E ) -> ( ( F ` C ) ` 0 ) = 0 ) |
25 |
24
|
adantr |
|- ( ( C e. ( O \ E ) /\ 1 e. C ) -> ( ( F ` C ) ` 0 ) = 0 ) |
26 |
25
|
oveq1d |
|- ( ( C e. ( O \ E ) /\ 1 e. C ) -> ( ( ( F ` C ) ` 0 ) + 1 ) = ( 0 + 1 ) ) |
27 |
18 22 26
|
3eqtrrd |
|- ( ( C e. ( O \ E ) /\ 1 e. C ) -> ( 0 + 1 ) = ( ( F ` C ) ` 1 ) ) |
28 |
27
|
eqeq1d |
|- ( ( C e. ( O \ E ) /\ 1 e. C ) -> ( ( 0 + 1 ) = 0 <-> ( ( F ` C ) ` 1 ) = 0 ) ) |
29 |
12 28
|
mtbii |
|- ( ( C e. ( O \ E ) /\ 1 e. C ) -> -. ( ( F ` C ) ` 1 ) = 0 ) |
30 |
1 2 3 4 5 6 7 8
|
ballotlemiex |
|- ( C e. ( O \ E ) -> ( ( I ` C ) e. ( 1 ... ( M + N ) ) /\ ( ( F ` C ) ` ( I ` C ) ) = 0 ) ) |
31 |
30
|
simprd |
|- ( C e. ( O \ E ) -> ( ( F ` C ) ` ( I ` C ) ) = 0 ) |
32 |
31
|
ad2antrr |
|- ( ( ( C e. ( O \ E ) /\ 1 e. C ) /\ ( I ` C ) = 1 ) -> ( ( F ` C ) ` ( I ` C ) ) = 0 ) |
33 |
|
fveqeq2 |
|- ( ( I ` C ) = 1 -> ( ( ( F ` C ) ` ( I ` C ) ) = 0 <-> ( ( F ` C ) ` 1 ) = 0 ) ) |
34 |
33
|
adantl |
|- ( ( ( C e. ( O \ E ) /\ 1 e. C ) /\ ( I ` C ) = 1 ) -> ( ( ( F ` C ) ` ( I ` C ) ) = 0 <-> ( ( F ` C ) ` 1 ) = 0 ) ) |
35 |
32 34
|
mpbid |
|- ( ( ( C e. ( O \ E ) /\ 1 e. C ) /\ ( I ` C ) = 1 ) -> ( ( F ` C ) ` 1 ) = 0 ) |
36 |
29 35
|
mtand |
|- ( ( C e. ( O \ E ) /\ 1 e. C ) -> -. ( I ` C ) = 1 ) |
37 |
36
|
neqned |
|- ( ( C e. ( O \ E ) /\ 1 e. C ) -> ( I ` C ) =/= 1 ) |